
Debugg AI MCP
Debugg AI MCP
README
🧪 Official MCP Server for Debugg AI
AI-driven browser automation and E2E test server implementing the Model Context Protocol (MCP), designed to help AI agents test UI changes, simulate user behavior, and analyze visual outputs of running web applications — all via natural language and CLI tools.
End to end testing used to be a nightmare. Not just to setup, but to manage over time as you made changes to your app.
Debugg AI's MCP server offers a NEW way to test, where you never have to worry about setting up playwright
, local browsers or proxies with it fully remote, managed browsers that simply connect to a server running locally or remotely via a secure tunnel
.
That means no distracting chrome pop ups as it's running tests, no managing chrome or playwright versions, and best of all - ZERO CONFIGURATION. Just grab an API key and add us to your MCP server list.
Should you want to later rerun those tests or create a suite of them to run in your CI / CD pipeline, you can see all historical test results in your dashboard - Debugg.AI App
🚀 Features
-
🧠 MCP Protocol Support Full MCP server implementation with CLI and tool registry support.
-
🧪 End-to-End Test Automation Trigger UI tests based on user stories or natural language descriptions via the
debugg_ai_test_page_changes
tool. -
🌐 Localhost Web App Integration Test your running dev app on any
localhost
port with simulated user flows. -
🧾 MCP Tool Notifications Sends real-time progress updates back to clients with step descriptions and UI state goals.
-
🧷 Screenshot Support Capture final visual state of the page for LLMs with image rendering support.
-
🧱 Stdio Server Compatible Plug into any MCP-compatible client (like Claude Desktop, LangChain agents, etc.) via stdin/stdout.
Examples
Input prompt: "Test the ability to create an account and login"
Results:
**Task Completed**
- Duration: 86.80 seconds
- Final Result: Successfully completed the task of signing up and logging into the account with the email 'alice.wonderland1234@example.com'.
- Status: Success
Full Demo:
Watch a more in-depth, Full Use Case Demo
🛠️ Quickstart
Ensure you have created a free account and generated an API Key - DebuggAI
Option 1: NPX (Local Development)
npx -y @debugg-ai/debugg-ai-mcp
Use this when testing or integrating into tools like Claude Desktop or your own AI agent.
Option 2: Docker
docker run -i --rm --init \
-e DEBUGGAI_API_KEY=your_api_key \
-e TEST_USERNAME_EMAIL=your_test_email \
-e TEST_USER_PASSWORD=your_password \
-e DEBUGGAI_LOCAL_PORT=3000 \
-e DEBUGGAI_LOCAL_REPO_NAME=your-org/your-repo \
-e DEBUGGAI_LOCAL_BRANCH_NAME=main \
-e DEBUGGAI_LOCAL_REPO_PATH=/app \
-e DEBUGGAI_LOCAL_FILE_PATH=/app/index.ts \
quinnosha/debugg-ai-mcp
🧰 MCP Tool: debugg_ai_test_page_changes
Description
Run an end-to-end test on a running web app, testing a UI feature or flow described in natural language. Allows AI agents in ANY code gen platform to quickly evaluate proposed changes and ensure new functionality works as expected.
Input Parameters
Name | Type | Required | Description |
---|---|---|---|
description |
string | ✅ | What feature or page to test (e.g. "Signup page form") |
localPort |
number | ❌ | Port of your running app (default: 3000 ) |
repoName |
string | ❌ | GitHub repo name |
branchName |
string | ❌ | Current branch |
repoPath |
string | ❌ | Absolute path to the repo |
filePath |
string | ❌ | File to test |
🧪 Example Claude Desktop Config
{
"mcpServers": {
"debugg-ai-mcp": {
"command": "npx",
"args": ["-y", "@debugg-ai/debugg-ai-mcp"],
"env": {
"DEBUGGAI_API_KEY": "YOUR_API_KEY",
"TEST_USERNAME_EMAIL": "test@example.com",
"TEST_USER_PASSWORD": "supersecure",
"DEBUGGAI_LOCAL_PORT": 3000,
"DEBUGGAI_LOCAL_REPO_NAME": "org/project",
"DEBUGGAI_LOCAL_BRANCH_NAME": "main",
"DEBUGGAI_LOCAL_REPO_PATH": "/Users/you/project",
"DEBUGGAI_LOCAL_FILE_PATH": "/Users/you/project/index.ts"
}
}
}
}
🔐 Environment Variables
Variable | Description | Required |
---|---|---|
DEBUGGAI_API_KEY |
API key for calling DebuggAI backend | ✅ |
TEST_USERNAME_EMAIL |
Email of test user account | ❌ |
TEST_USER_PASSWORD |
Password of test user account | ❌ |
DEBUGGAI_LOCAL_PORT |
Local port your app runs on | ✅ |
DEBUGGAI_LOCAL_REPO_NAME |
GitHub repo name | ❌ |
DEBUGGAI_LOCAL_BRANCH_NAME |
Branch name | ❌ |
DEBUGGAI_LOCAL_REPO_PATH |
Local path to repo root | ❌ |
DEBUGGAI_LOCAL_FILE_PATH |
File to test | ❌ |
🧑💻 Local Development
# Clone the repo and install dependencies
npm install
# Copy the test config and insert your creds
cp test-config-example.json test-config.json
# Run the MCP server locally
npx @modelcontextprotocol/inspector --config debugg-ai-mcp/test-config.json --server debugg-ai-mcp
📁 Repo Structure
.
├── e2e-agents/ # E2E browser test runners
├── services/ # Client for DebuggAI API
├── tunnels / # Secure connections to remote web browsers
├── index.ts # Main MCP server entry
├── Dockerfile # Docker build config
└── README.md
🧱 Built With
💬 Feedback & Issues
For bugs, ideas, or integration help, open an issue or contact the DebuggAI team directly.
🔒 License
MIT License © 2025 DebuggAI
<p style="padding-top: 20px; text-align: center;">Made with 🩸, 💦, and 😭 in San Francisco</p>
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。