Deep Research MCP

Deep Research MCP

A Model Context Protocol compliant server that facilitates comprehensive web research by utilizing Tavily's Search and Crawl APIs to gather and structure data for high-quality markdown document creation.

Category
访问服务器

Tools

deep-research-tool

Performs extensive web research using Tavily Search and Crawl. Returns aggregated JSON data including the query, search summary (if any), detailed research findings, and documentation instructions. The documentation instructions will guide you on how the user wants the research data to be formatted into markdown.

README

Deep Research MCP 🌐

Deep Research MCP
Download Releases

Welcome to the Deep Research MCP repository! This project provides a server compliant with the Model Context Protocol (MCP). It is designed to facilitate comprehensive web research. By utilizing Tavily's Search and Crawl APIs, the server gathers detailed information on various topics and structures this data to support high-quality markdown document creation using large language models (LLMs).

Table of Contents

Features

  • MCP Compliance: The server adheres to the Model Context Protocol, ensuring compatibility with various tools and services.
  • Data Aggregation: Efficiently gathers and structures data from multiple sources.
  • Markdown Generation: Converts gathered data into well-structured markdown documents.
  • Web Crawling: Utilizes Tavily's Search and Crawl APIs for in-depth web research.
  • Node.js and TypeScript: Built using modern technologies for better performance and maintainability.

Installation

To get started with Deep Research MCP, follow these steps:

  1. Clone the repository:

    git clone https://github.com/ali-kh7/deep-research-mcp.git
    
  2. Navigate to the project directory:

    cd deep-research-mcp
    
  3. Install the dependencies:

    npm install
    
  4. Run the server:

    npm start
    

You can also check the Releases section for downloadable files and specific versions.

Usage

Once the server is running, you can interact with it via the API. Here’s how to use it effectively:

  1. Send a request to gather information:

    You can send a request to the server with a specific topic to gather data. The server will return structured information ready for markdown generation.

    Example request:

    POST /api/research
    Content-Type: application/json
    
    {
      "topic": "Artificial Intelligence"
    }
    
  2. Receive structured data:

    The server responds with data in a structured format. This data can be used directly or transformed into markdown documents.

  3. Generate markdown documents:

    The structured data can be converted into markdown using the provided functions in the API.

Example Markdown Output

# Artificial Intelligence

## Overview
Artificial Intelligence (AI) refers to the simulation of human intelligence in machines.

## Applications
- Healthcare
- Finance
- Transportation

## Conclusion
AI is transforming industries and shaping the future.

API Documentation

For detailed API documentation, please refer to the docs folder in this repository. It contains information on all available endpoints, request formats, and response structures.

Endpoints

  • POST /api/research: Gather information on a specific topic.
  • GET /api/status: Check the server status.

Contributing

We welcome contributions to improve Deep Research MCP. If you want to contribute, please follow these steps:

  1. Fork the repository.

  2. Create a new branch:

    git checkout -b feature/YourFeatureName
    
  3. Make your changes.

  4. Commit your changes:

    git commit -m "Add your message here"
    
  5. Push to the branch:

    git push origin feature/YourFeatureName
    
  6. Open a Pull Request.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Support

If you encounter any issues or have questions, please check the Releases section or open an issue in the repository.


Thank you for checking out Deep Research MCP! We hope this tool enhances your web research capabilities. Happy coding!

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选