Deepgram Async MCP Server

Deepgram Async MCP Server

Enables asynchronous transcription of long audio and video files using Deepgram's Speech-to-Text API with features like speaker diarization, sentiment analysis, topic detection, and summarization without timeout issues.

Category
访问服务器

README

Deepgram Async MCP Server

Remote MCP server for Deepgram Async Speech-to-Text API with webhook relay support. Transcribe long audio and video files asynchronously - perfect for marketers transcribing hour-long videos and podcasts without timeout issues.

Why This Server?

Problem: Claude MCP Connect has a 10-second timeout, but long videos take minutes to transcribe.

Solution: True async processing with polling:

  1. Submit transcription job (returns immediately with request_id)
  2. Deepgram processes in background
  3. Results stored in webhook relay (Cloudflare Worker)
  4. Poll every 30 seconds until ready
  5. Get full transcript with all features

Architecture

Your AI → MCP Server → Deepgram API (async)
                          ↓
                    Webhook Relay (Cloudflare Worker + KV Storage)
                          ↑
         MCP Server ← Poll for results

Features

Two MCP Tools

  1. submit_transcription_job - Send audio/video URLs for async transcription

    • ✅ Handles 1-hour+ videos without timeout
    • ✅ Speaker diarization (detect different speakers)
    • ✅ Smart formatting and punctuation
    • ✅ Sentiment analysis
    • ✅ Topic detection
    • ✅ Entity extraction (names, places, brands)
    • ✅ Summarization
    • ✅ Multi-language support
    • ✅ Multiple AI models (Nova-3, Nova-2, Whisper)
  2. check_job_status - Retrieve transcription results when ready

    • ✅ Poll for job completion
    • ✅ Get full transcription with all requested features
    • ✅ Automatic fallback to Deepgram Management API
  3. test_deepgram_connection - Verify setup is working

Prerequisites

  1. Deepgram API key (Get one here)
  2. Webhook Relay (Cloudflare Worker) - Required!
  3. Smithery account for deployment

Quick Start

Step 1: Deploy Webhook Relay

See the complete guide: SETUP_GUIDE.md

Quick version:

cd deepgram-webhook-relay
npm install -g wrangler
wrangler login
wrangler kv:namespace create TRANSCRIPTS
# Update wrangler.toml with KV namespace ID
wrangler deploy

You'll get a URL like: https://deepgram-webhook-relay.YOUR_SUBDOMAIN.workers.dev

Step 2: Deploy MCP Server to Smithery

  1. Push this repo to GitHub
  2. Go to Smithery
  3. Connect your GitHub repository
  4. Smithery will auto-deploy

Step 3: Configure

Provide these values in Smithery:

{
  "deepgramApiKey": "your-deepgram-api-key",
  "webhookUrl": "https://your-worker.workers.dev/callback"
}

Step 4: Use in Claude

System Prompt:

When transcribing audio/video:
1. Use submit_transcription_job to start
2. Get the request_id from response
3. Wait 30 seconds (use sleep tool)
4. Use check_job_status with request_id
5. If "Still Processing", repeat steps 3-4
6. When "Complete", present the transcript

Example:

User: Transcribe this podcast: https://example.com/podcast.mp4

AI: I'll transcribe that for you.
[Uses submit_transcription_job]
Job submitted! Request ID: abc123
[Waits 30s]
[Uses check_job_status]
Still processing...
[Waits 30s]
[Uses check_job_status]
✅ Complete! Here's the transcript: ...

Configuration

Required

  • deepgramApiKey: Your Deepgram API key (must have Member role or higher)
  • webhookUrl: Your Cloudflare Worker callback URL (e.g., https://your-worker.workers.dev/callback)

Optional

  • projectId: Your Deepgram project ID (auto-detected if not provided)

API Key Requirements

⚠️ Important: Your Deepgram API key must have Member role or higher.

Required permissions:

  • project:write - Submit transcription jobs
  • project:read - Auto-detect project ID (optional if you provide projectId)
  • usage:read - Check job status via Management API

How to create a proper API key:

  1. Go to Deepgram Console
  2. Navigate to API Keys
  3. Click Create a New API Key
  4. Select Member role (or Admin/Owner)
  5. Copy the key and use it in your configuration

See API_PERMISSIONS.md for detailed troubleshooting.

Usage Examples

Basic Transcription

Tool: submit_transcription_job
Parameters:
  url: "https://example.com/video.mp4"
  smart_format: true
  punctuate: true

Marketing Use Case (Full Features)

Tool: submit_transcription_job
Parameters:
  url: "https://example.com/podcast.mp4"
  diarize: true              # Detect speakers
  smart_format: true         # Professional formatting
  punctuate: true            # Add punctuation
  paragraphs: true           # Split into paragraphs
  sentiment: true            # Analyze sentiment
  topics: true               # Detect topics
  detect_entities: true      # Extract names, brands
  summarize: true            # Generate summary
  model: "nova-3"            # Latest model

Check Status

Tool: check_job_status
Parameters:
  request_id: "abc123-def456-..."

Processing Times

Typical processing times (varies by file length and complexity):

  • 5-minute video: 30-60 seconds
  • 30-minute video: 1-2 minutes
  • 1-hour video: 2-3 minutes
  • 2-hour podcast: 5-8 minutes

Recommendation: Poll every 30 seconds to balance responsiveness and API usage.

Troubleshooting

"Webhook relay unreachable"

  1. Verify Cloudflare Worker is deployed: wrangler deployments list
  2. Test manually: curl https://your-worker.workers.dev/health
  3. Check webhook URL in configuration is correct

"Transcript not found"

  1. Job may still be processing - wait 30s and try again
  2. Check request_id is correct
  3. Transcripts expire after 7 days in webhook relay

"403 Forbidden"

  1. API key lacks permissions - must be Member role or higher
  2. See API_PERMISSIONS.md for detailed guide

"Failed to submit transcription job"

  1. Verify audio URL is publicly accessible
  2. Check Deepgram account has credits
  3. Ensure file format is supported (MP3, WAV, MP4, etc.)

Complete Documentation

Project Structure

deepgram-mcp-server/          # MCP server (this directory)
├── src/
│   ├── index.ts              # Main MCP server
│   └── deepgram-client.ts    # Deepgram API client
├── package.json
├── smithery.yaml
└── README.md

deepgram-webhook-relay/       # Cloudflare Worker
├── worker.js                 # Webhook relay logic
├── wrangler.toml            # Cloudflare config
└── README.md

Costs

Deepgram (Pay-as-you-go)

Cloudflare (Free Tier)

  • 100,000 requests/day
  • 1 GB KV storage
  • More than enough for most use cases

Smithery (Free Tier)

Support

Related Projects

This MCP server works with other async tools:

  • Klap (video editing)
  • Rendi (video rendering)
  • Any service with async processing + callbacks

License

MIT

Contributing

Pull requests welcome! Please ensure:

  1. TypeScript compiles without errors
  2. Smithery build succeeds
  3. Documentation is updated

Changelog

v2.0.0 (Current)

  • ✅ True async processing with webhook relay
  • ✅ Cloudflare Worker for transcript storage
  • ✅ Polling support for long videos
  • ✅ Handles 1-hour+ content without timeout

v1.0.0

  • Initial release with basic async support

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选