Deepgram Async MCP Server
Enables asynchronous transcription of long audio and video files using Deepgram's Speech-to-Text API with features like speaker diarization, sentiment analysis, topic detection, and summarization without timeout issues.
README
Deepgram Async MCP Server
Remote MCP server for Deepgram Async Speech-to-Text API with webhook relay support. Transcribe long audio and video files asynchronously - perfect for marketers transcribing hour-long videos and podcasts without timeout issues.
Why This Server?
Problem: Claude MCP Connect has a 10-second timeout, but long videos take minutes to transcribe.
Solution: True async processing with polling:
- Submit transcription job (returns immediately with request_id)
- Deepgram processes in background
- Results stored in webhook relay (Cloudflare Worker)
- Poll every 30 seconds until ready
- Get full transcript with all features
Architecture
Your AI → MCP Server → Deepgram API (async)
↓
Webhook Relay (Cloudflare Worker + KV Storage)
↑
MCP Server ← Poll for results
Features
Two MCP Tools
-
submit_transcription_job - Send audio/video URLs for async transcription
- ✅ Handles 1-hour+ videos without timeout
- ✅ Speaker diarization (detect different speakers)
- ✅ Smart formatting and punctuation
- ✅ Sentiment analysis
- ✅ Topic detection
- ✅ Entity extraction (names, places, brands)
- ✅ Summarization
- ✅ Multi-language support
- ✅ Multiple AI models (Nova-3, Nova-2, Whisper)
-
check_job_status - Retrieve transcription results when ready
- ✅ Poll for job completion
- ✅ Get full transcription with all requested features
- ✅ Automatic fallback to Deepgram Management API
-
test_deepgram_connection - Verify setup is working
Prerequisites
- Deepgram API key (Get one here)
- Webhook Relay (Cloudflare Worker) - Required!
- Smithery account for deployment
Quick Start
Step 1: Deploy Webhook Relay
See the complete guide: SETUP_GUIDE.md
Quick version:
cd deepgram-webhook-relay
npm install -g wrangler
wrangler login
wrangler kv:namespace create TRANSCRIPTS
# Update wrangler.toml with KV namespace ID
wrangler deploy
You'll get a URL like: https://deepgram-webhook-relay.YOUR_SUBDOMAIN.workers.dev
Step 2: Deploy MCP Server to Smithery
- Push this repo to GitHub
- Go to Smithery
- Connect your GitHub repository
- Smithery will auto-deploy
Step 3: Configure
Provide these values in Smithery:
{
"deepgramApiKey": "your-deepgram-api-key",
"webhookUrl": "https://your-worker.workers.dev/callback"
}
Step 4: Use in Claude
System Prompt:
When transcribing audio/video:
1. Use submit_transcription_job to start
2. Get the request_id from response
3. Wait 30 seconds (use sleep tool)
4. Use check_job_status with request_id
5. If "Still Processing", repeat steps 3-4
6. When "Complete", present the transcript
Example:
User: Transcribe this podcast: https://example.com/podcast.mp4
AI: I'll transcribe that for you.
[Uses submit_transcription_job]
Job submitted! Request ID: abc123
[Waits 30s]
[Uses check_job_status]
Still processing...
[Waits 30s]
[Uses check_job_status]
✅ Complete! Here's the transcript: ...
Configuration
Required
- deepgramApiKey: Your Deepgram API key (must have Member role or higher)
- webhookUrl: Your Cloudflare Worker callback URL (e.g.,
https://your-worker.workers.dev/callback)
Optional
- projectId: Your Deepgram project ID (auto-detected if not provided)
API Key Requirements
⚠️ Important: Your Deepgram API key must have Member role or higher.
Required permissions:
project:write- Submit transcription jobsproject:read- Auto-detect project ID (optional if you provide projectId)usage:read- Check job status via Management API
How to create a proper API key:
- Go to Deepgram Console
- Navigate to API Keys
- Click Create a New API Key
- Select Member role (or Admin/Owner)
- Copy the key and use it in your configuration
See API_PERMISSIONS.md for detailed troubleshooting.
Usage Examples
Basic Transcription
Tool: submit_transcription_job
Parameters:
url: "https://example.com/video.mp4"
smart_format: true
punctuate: true
Marketing Use Case (Full Features)
Tool: submit_transcription_job
Parameters:
url: "https://example.com/podcast.mp4"
diarize: true # Detect speakers
smart_format: true # Professional formatting
punctuate: true # Add punctuation
paragraphs: true # Split into paragraphs
sentiment: true # Analyze sentiment
topics: true # Detect topics
detect_entities: true # Extract names, brands
summarize: true # Generate summary
model: "nova-3" # Latest model
Check Status
Tool: check_job_status
Parameters:
request_id: "abc123-def456-..."
Processing Times
Typical processing times (varies by file length and complexity):
- 5-minute video: 30-60 seconds
- 30-minute video: 1-2 minutes
- 1-hour video: 2-3 minutes
- 2-hour podcast: 5-8 minutes
Recommendation: Poll every 30 seconds to balance responsiveness and API usage.
Troubleshooting
"Webhook relay unreachable"
- Verify Cloudflare Worker is deployed:
wrangler deployments list - Test manually:
curl https://your-worker.workers.dev/health - Check webhook URL in configuration is correct
"Transcript not found"
- Job may still be processing - wait 30s and try again
- Check request_id is correct
- Transcripts expire after 7 days in webhook relay
"403 Forbidden"
- API key lacks permissions - must be Member role or higher
- See API_PERMISSIONS.md for detailed guide
"Failed to submit transcription job"
- Verify audio URL is publicly accessible
- Check Deepgram account has credits
- Ensure file format is supported (MP3, WAV, MP4, etc.)
Complete Documentation
- SETUP_GUIDE.md - Step-by-step deployment guide
- API_PERMISSIONS.md - API key permissions and troubleshooting
- DEPLOYMENT.md - Smithery deployment details
- deepgram-webhook-relay/README.md - Webhook relay documentation
Project Structure
deepgram-mcp-server/ # MCP server (this directory)
├── src/
│ ├── index.ts # Main MCP server
│ └── deepgram-client.ts # Deepgram API client
├── package.json
├── smithery.yaml
└── README.md
deepgram-webhook-relay/ # Cloudflare Worker
├── worker.js # Webhook relay logic
├── wrangler.toml # Cloudflare config
└── README.md
Costs
Deepgram (Pay-as-you-go)
- Nova-3: $0.0043/minute
- 1-hour video = ~$0.26
- Pricing details
Cloudflare (Free Tier)
- 100,000 requests/day
- 1 GB KV storage
- More than enough for most use cases
Smithery (Free Tier)
- Generous free tier for MCP servers
- Pricing details
Support
- Setup Issues: See SETUP_GUIDE.md
- API Permissions: See API_PERMISSIONS.md
- Deepgram: https://developers.deepgram.com
- Smithery: https://smithery.ai/docs
Related Projects
This MCP server works with other async tools:
- Klap (video editing)
- Rendi (video rendering)
- Any service with async processing + callbacks
License
MIT
Contributing
Pull requests welcome! Please ensure:
- TypeScript compiles without errors
- Smithery build succeeds
- Documentation is updated
Changelog
v2.0.0 (Current)
- ✅ True async processing with webhook relay
- ✅ Cloudflare Worker for transcript storage
- ✅ Polling support for long videos
- ✅ Handles 1-hour+ content without timeout
v1.0.0
- Initial release with basic async support
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。