Delia

Delia

Routes AI tasks to appropriate local LLM models (quick, coder, MoE, thinking) with automatic model selection, multi-backend support (Ollama, llama.cpp, Gemini), and parallel processing capabilities.

Category
访问服务器

README

Delia

A Model Context Protocol (MCP) server that cultivates your local LLM garden. Plant a seed, let Delia pick the right vine, and harvest a fresh melon.

Delia - from Greek Δηλία, "from Delos" (the sacred island). Also, she grows watermelons.

Features

  • Smart Vine Selection: Routes seeds to the right vine - quick (7B), coder (14B+), moe (30B+), or thinking
  • Multi-Garden Support: Ollama, llama.cpp, and Gemini gardens with automatic failover
  • Context-Aware Routing: Handles large seeds with appropriate context windows
  • Circuit Breaker: Drought protection with graceful recovery
  • Parallel Processing: Tends multiple seeds simultaneously
  • Authentication: Optional greenhouse access control
  • Usage Tracking: Per-gardener quotas and harvest monitoring
  • Dashboard: Real-time garden status with watermelon-themed activity feed

Requirements

Hardware

Component Minimum Recommended Large Models
GPU 4GB VRAM 12GB VRAM 24GB+ VRAM
RAM 8GB 16GB 32GB+
Storage 10GB 30GB 50GB+

Software

  • Python 3.11+
  • uv package manager
  • One or more backends:
    • Ollama (recommended)
    • llama.cpp
    • Google Gemini API (optional cloud fallback)

Quick Start

# Clone and install
git clone https://github.com/zbrdc/delia.git
cd delia
uv sync

# Pull models (examples - choose based on your hardware)
ollama pull qwen3:14b           # General purpose
ollama pull qwen2.5-coder:14b   # Code specialized
ollama pull qwen3:30b-a3b       # Complex reasoning

# Run server
uv run python mcp_server.py

Integration

Delia works with AI coding assistants via MCP. Choose your tool:

VS Code / GitHub Copilot

Add to ~/.config/Code/User/mcp.json:

{
  "servers": {
    "delia": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/delia", "python", "mcp_server.py"],
      "type": "stdio"
    }
  }
}

Reload VS Code to activate.

Claude Code

Create ~/.claude/mcp.json:

{
  "mcpServers": {
    "delia": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/delia", "python", "mcp_server.py"]
    }
  }
}

Then run claude and use @delia to delegate tasks.

Gemini CLI

Option 1: HTTP Mode (Recommended)

# Start server
uv run python mcp_server.py --transport sse --port 8200

Add to ~/.gemini/settings.json:

{
  "mcpServers": {
    "delia": {
      "url": "http://localhost:8200/sse",
      "transport": "sse"
    }
  }
}

Option 2: STDIO Mode

Add to ~/.gemini/settings.json:

{
  "mcpServers": {
    "delia": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/delia", "python", "mcp_server.py"]
    }
  }
}

GitHub Copilot CLI

Create ~/.copilot-cli/mcp.json:

{
  "servers": {
    "delia": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/delia", "python", "mcp_server.py"]
    }
  }
}

Configuration

Backend Configuration

Edit settings.json in the project root:

{
  "backends": [
    {
      "id": "ollama-local",
      "name": "Ollama Local",
      "provider": "ollama",
      "type": "local",
      "url": "http://localhost:11434",
      "enabled": true,
      "priority": 1,
      "models": {
        "quick": "qwen3:14b",
        "coder": "qwen2.5-coder:14b",
        "moe": "qwen3:30b-a3b",
        "thinking": "deepseek-r1:14b"
      }
    }
  ],
  "routing": {
    "prefer_local": true,
    "fallback_enabled": true
  }
}

Gemini Cloud Backend (Optional)

Add Gemini as a cloud fallback:

# Install dependency
uv add google-generativeai

# Set API key
export GEMINI_API_KEY="your-key-from-aistudio.google.com"

Add to settings.json:

{
  "id": "gemini-cloud",
  "name": "Gemini Cloud",
  "provider": "gemini",
  "type": "remote",
  "url": "https://generativelanguage.googleapis.com",
  "enabled": true,
  "priority": 10,
  "models": {
    "quick": "gemini-2.0-flash",
    "coder": "gemini-2.0-flash",
    "moe": "gemini-2.0-flash"
  }
}

Authentication (Optional)

For HTTP mode with multiple users:

# Quick setup
python setup_auth.py

# Or manually
export DELIA_AUTH_ENABLED=true
export DELIA_JWT_SECRET="your-secure-secret"

Supports username/password and Microsoft 365 OAuth.

Transport Modes

# STDIO (default) - for VS Code, Claude Code, Copilot CLI
uv run python mcp_server.py

# HTTP/SSE - for Gemini CLI, web clients, remote access
uv run python mcp_server.py --transport sse --port 8200

# View all options
uv run python mcp_server.py --help

Tools

Delia provides these MCP tools:

Tool Description
delegate Execute tasks with automatic model selection
think Extended reasoning for complex problems
batch Process multiple tasks in parallel
health Check backend status and statistics
models List available models and tiers
switch_backend Switch between backends at runtime
switch_model Change model for a tier
get_model_info Get model specifications

Vine Selection

Delia picks the right vine for every seed:

Vine Size Best For
Quick 7B-14B Summaries, simple questions
Coder 14B-30B Generation, review, debugging
MoE 30B+ Architecture, critique, analysis
Thinking Specialized Extended reasoning, research

Override with hints in your prompt: "use the large model" or "quick answer".

Troubleshooting

Server won't start

# Check Ollama is running
curl http://localhost:11434/api/tags

# Test server import
uv run python -c "import mcp_server; print('OK')"

MCP not connecting

  • Verify path in config points to correct directory
  • Reload VS Code / restart Claude Code
  • Check logs: ~/.cache/delia/live_logs.json

"Unknown" responses

  • Backend not running or unreachable
  • Check settings.json configuration
  • Run curl http://localhost:11434/health

Slow responses

  • Try smaller models
  • Check system resources (nvidia-smi, htop)
  • Reduce context size in settings.json

Performance

Typical harvest times (modern hardware):

  • Quick vine: 2-5 seconds
  • Coder vine: 5-15 seconds
  • MoE/Thinking vines: 30-60 seconds

License

BSD 3-Clause

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选