Delphi Build MCP Server
Enables AI coding agents to compile Delphi projects programmatically by parsing .dproj files, executing the Delphi compiler, and returning structured error results with multi-language support and automatic configuration generation from IDE build logs.
README
Delphi Build MCP Server
A Model Context Protocol (MCP) server that enables AI coding agents like Claude Code to compile Delphi projects programmatically.
Features
- Automatic Configuration: Generate config from IDE build logs with multi-line parsing
- Smart Compilation: Reads .dproj files for build settings and compiler flags
- Filtered Output: Returns only errors, filters out warnings and hints
- Multi-Language Support: Parses both English and German compiler output
- Response File Support: Handles command lines >8000 characters automatically
- Multi-Platform: Supports Win32 and Win64 compilation
- 80+ Library Paths: Successfully handles projects with extensive dependencies
- Environment Variables: Auto-expands
${USERNAME}in paths - MCP Compatible: Works with Claude Code, Cline, and other MCP clients
Quick Start
1. Install
# Install UV if you haven't already
# Windows: powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
# macOS/Linux: curl -LsSf https://astral.sh/uv/install.sh | sh
# Or: pip install uv
cd delphi-build-mcp-server
uv sync
2. Generate Configuration
In Delphi IDE:
- Tools -> Options -> Building -> Show compiler progress -> "Verbose"
- Build your project
- View -> Messages -> Right-click -> Copy All
- Save to
build.log
Then generate config:
uv run python -m src.config_generator build.log
Or use the Python API:
from src.config_generator import ConfigGenerator
from pathlib import Path
generator = ConfigGenerator()
result = generator.generate_from_build_log(
build_log_path=Path("build.log"),
output_path=Path("delphi_config.toml")
)
print(result.message)
3. Configure Claude Code
Edit %APPDATA%\Claude\claude_desktop_config.json:
Using UV (Recommended):
{
"mcpServers": {
"delphi-build": {
"command": "uv",
"args": [
"run",
"--directory",
"X:\\path\\to\\delphi-build-mcp-server",
"python",
"main.py"
],
"env": {
"DELPHI_CONFIG": "X:\\path\\to\\delphi_config.toml"
}
}
}
}
Or use direct Python path:
{
"mcpServers": {
"delphi-build": {
"command": "X:\\path\\to\\delphi-build-mcp-server\\.venv\\Scripts\\python.exe",
"args": ["X:\\path\\to\\delphi-build-mcp-server\\main.py"],
"env": {
"DELPHI_CONFIG": "X:\\path\\to\\delphi_config.toml"
}
}
}
}
4. Use in Claude Code
Please compile my Delphi project at X:\MyProject\MyApp.dproj
Tools
compile_delphi_project
Compile a Delphi project and return parsed results.
Parameters:
project_path(required): Path to .dpr or .dproj fileforce_build_all: Force rebuild all unitsoverride_config: Override build config (Debug/Release)override_platform: Override platform (Win32/Win64)additional_search_paths: Extra search pathsadditional_flags: Additional compiler flags
Returns:
success: Whether compilation succeedederrors: List of compilation errors (warnings/hints filtered)compilation_time_seconds: Time takenoutput_executable: Path to compiled EXEstatistics: Compilation statistics
generate_config_from_build_log
Generate delphi_config.toml from an IDE build log.
Parameters:
build_log_path(required): Path to build log fileoutput_config_path: Output file path (default: delphi_config.toml)use_env_vars: Replace paths with ${USERNAME} (default: true)
Returns:
success: Whether generation succeededconfig_file_path: Path to generated configstatistics: Paths found and processeddetected_info: Delphi version, platform, build config
Documentation
- QUICKSTART.md - 5-minute setup guide
- DOCUMENTATION.md - Complete reference
- PRD.md - Product requirements and specifications
Project Structure
delphi-build-mcp-server/
├── main.py # MCP server entry point
├── src/
│ ├── models.py # Pydantic data models
│ ├── buildlog_parser.py # Parse IDE build logs
│ ├── dproj_parser.py # Parse .dproj files
│ ├── config.py # Load TOML configuration
│ ├── output_parser.py # Parse compiler output
│ ├── config_generator.py # Generate TOML configs
│ └── compiler.py # Compiler orchestration
├── delphi_config.toml.template # Configuration template
├── pyproject.toml # Python project config
├── QUICKSTART.md # Quick start guide
├── DOCUMENTATION.md # Complete documentation
└── PRD.md # Product requirements
Requirements
- Python 3.10+
- Delphi 11, 12, or 13
- MCP-compatible client (Claude Code, Cline, etc.)
How It Works
Note: The server automatically handles response files for projects with 80+ library paths (command lines >8000 chars) and parses both English and German compiler output.
1. AI Agent calls compile_delphi_project
|
v
2. MCP Server loads delphi_config.toml
- Delphi installation paths
- Library search paths
|
v
3. Parse .dproj file
- Active configuration (Debug/Release)
- Compiler flags and defines
- Project-specific search paths
|
v
4. Build compiler command
- Merge config file + .dproj settings
- Add search paths, namespaces, aliases
|
v
5. Execute dcc32.exe/dcc64.exe
|
v
6. Parse output
- Extract errors (E####, F####)
- Filter warnings (W####) and hints (H####)
|
v
7. Return structured result to AI
Example Usage
Compile a Project
from src.compiler import DelphiCompiler
from pathlib import Path
compiler = DelphiCompiler()
result = compiler.compile_project(
project_path=Path("X:/MyProject/MyApp.dproj")
)
if result.success:
print(f"Compilation successful: {result.output_executable}")
else:
print(f"Compilation failed with {len(result.errors)} errors:")
for error in result.errors:
print(f" {error.file}({error.line},{error.column}): {error.message}")
Generate Config from Build Log
from src.config_generator import ConfigGenerator
from pathlib import Path
generator = ConfigGenerator(use_env_vars=True)
result = generator.generate_from_build_log(
build_log_path=Path("build.log"),
output_path=Path("delphi_config.toml")
)
print(f"{result.message}")
print(f" Detected: Delphi {result.detected_info.delphi_version}")
print(f" Platform: {result.detected_info.platform}")
print(f" Paths found: {result.statistics['unique_paths']}")
Troubleshooting
"Configuration file not found"
Generate it from a build log:
uv run python -m src.config_generator build.log
"Unit not found"
Regenerate config from a fresh IDE build log that includes all dependencies.
"Compiler not found"
Verify delphi.root_path in delphi_config.toml points to your Delphi installation.
Development
Install Development Dependencies
uv pip install -e ".[dev]"
Run Tests
uv run pytest
Test Sample Projects
Two sample projects are included for testing:
# Test successful compilation
uv run python test_compile_samples.py
- sample/working/Working.dproj - Compiles successfully
- sample/broken/Broken.dproj - Intentionally has errors for testing error parsing
Code Formatting
uv run black src/
uv run ruff check src/
Contributing
Contributions are welcome! Please see CONTRIBUTING.md for guidelines.
License
MIT License - see LICENSE file for details.
Support
- Documentation: DOCUMENTATION.md
- Quick Start: QUICKSTART.md
- Issues: https://github.com/your-org/delphi-build-mcp-server/issues
Acknowledgments
- Built with Model Context Protocol
- Designed for Claude Code
- Supports Embarcadero Delphi
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。