Desmos MCP Server
Enables mathematical formula visualization and analysis through interactive plotting, formula validation, and symbolic computation. Supports both Desmos API integration and local matplotlib rendering for creating 2D mathematical graphs.
README
Desmos-MCP Server
English | 中文
This is a standard Model Context Protocol (MCP) server designed to provide powerful mathematical formula visualization and analysis capabilities for Large Language Models (LLMs). It utilizes sympy for local rendering and computation, and can optionally integrate with the Desmos API.
✨ Features
- Interactive Formula Validation: Use the
validate_formulatool to check the syntax of mathematical formulas. If a formula is invalid, it uses the LLM sampling feature to provide an easy-to-understand explanation of the error. - Single Function Plotting: Use the
plot_math_functiontool to generate a 2D plot from a formula. It supports using the Desmos API (configurable viaconfig.json) or falling back to localmatplotlibrendering, and provides progress reports during execution. - Multiple Function Plotting: Use the
plot_multiple_functionstool to plot multiple functions on the same graph. - Symbolic Analysis: Use the
analyze_formulatool to calculate mathematical properties of a formula, such as its domain, range, and critical points. - Save Plot to File: Automatically saves the generated plot as a PNG file to a
Desmos-MCPfolder on your desktop.
⚙️ Tech Stack
- Python 3.10+
- FastMCP
- Sympy
- Matplotlib
- HTTPX
🚀 Installation & Setup
- Clone the project (if you haven't already)
- Install
uvIf you don't haveuvinstalled, run the following command in your terminal:powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex" - Create a virtual environment
In the project root directory, run:
uv venv - Install dependencies
This command will install all the necessary dependencies based on theuv syncpyproject.tomlfile.
🔧 Configuration
The server's behavior is controlled by the config.json file in the project root.
{
"desmos": {
"use_api": true,
"api_key_env_var": "DESMOS_API_KEY",
"fallback_to_local": true
},
"rendering": {
"default_width": 600,
"default_height": 400
}
}
desmos.use_api: Iftrue, the server will first attempt to use the Desmos API for plotting.desmos.api_key_env_var: Specifies the name of the environment variable used to get the Desmos API key.desmos.fallback_to_local: Ifuse_apiistruebut the API call fails, this determines if the server should automatically fall back to local rendering.
Set Desmos API Key (Optional)
To use the Desmos API feature, you need to set an environment variable. For example, in PowerShell:
$env:DESMOS_API_KEY="your_actual_api_key_here"
▶️ Running the Server
To run the server independently for testing, execute the following command in the project root:
uv run src/main.py
The server will start via standard input/output (stdio) and will be ready to be connected by an MCP client (like the Gemini CLI).
📝 To-Do
- [ ] Add 3D plotting support.
- [ ] Implement real-time formula analysis and interactive plotting, similar to Desmos.
📄 License
This project is licensed under the Apache 2.0 License. See the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。