
DevBrain
Quickly search indexed indie devs blog posts and articles. It is like chatting with your favourite newsletters (coding, tech, founder). It's kind of like a web search, but specifically tuned for high-quality, developer-curated content. Use case: help implement features faster.
Tools
retrieve_knowledge
Queries DevBrain (aka `developer`s brain` system) and returns relevant information. Args: query: The question or ask to query for knowledge. tags: Optional comma-separated list of tags (keywords) to filter or ground the search. (e.g.: `ios`, `ios,SwiftUI`, `react-native`, `web`, `web,react`, `fullstack,react-native,flutter`). Do not provide more than 3 words. Returns: str: Helpful knowledge and context information from DevBrain (articles include title, short description and a URL to the full article to read it later).
read_full_article
Returns the full content of an article identified by its URL. Args: url: The URL of the article to read. Returns: str: The full content of the article or an error message.
get_token
Retrieves the stored token. Returns: str: The stored token if available, otherwise "Token not set".
set_token
Sets the token. Args: token (str): The token string to store. Returns: str: A confirmation message.
README
DevBrain MCP Server
Chat with your favorite newsletters (coding, tech, founder).
<a href="https://glama.ai/mcp/servers/@mimeCam/mcp-devbrain-stdio"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@mimeCam/mcp-devbrain-stdio/badge" alt="DevBrain MCP server" /> </a>
DevBrain pulls up relevant code snippets, indie developer articles, and blog posts, all based on what you're looking for.
It's kind of like a web search, but specifically tuned for high-quality, developer-curated content. You can easily plug in your favorite newsletters to expand its knowledge base even further.
For example, when you are implementing feature "A", DevBrain can pull related articles that would serve as a solid reference and a foundation for your implementation.
<img width="400" alt="usage-claude" src="https://github.com/user-attachments/assets/f87b80ee-7829-43e8-9223-a02a38b4fd12" /> | |
---|---|
Claude app | Goose app (tap on an image to open utube) |
DevBrain returns articles as short description + URL, you can then:
- instruct LLM agent like
Claude
orGoose
to fetch full contents of the articles using provided URLs - instruct LLM to implement a feature based on all or selected articles
Installation and Usage
Via uv
or uvx
. Install uv
and uvx
(if not installed):
curl -LsSf https://astral.sh/uv/install.sh | sh
Example command to run MCP server in stdio
mode:
uvx --from devbrain devbrain-stdio-server
Use in Claude
To add devbrain
to Claude's config, edit the file:
~/Library/Application Support/Claude/claude_desktop_config.json
and insert devbrain
to existing mcpServers
block like so:
{
"mcpServers": {
"devbrain": {
"command": "uvx",
"args": [
"--from",
"devbrain",
"devbrain-stdio-server"
]
}
}
}
Claude is known to fail when working with uv
and uvx
binaries. See related: https://gist.github.com/gregelin/b90edaef851f86252c88ecc066c93719. If you encounter this error then run these commands in a Terminal:
sudo mkdir -p /usr/local/bin
sudo ln -s ~/.local/bin/uvx /usr/local/bin/uvx
sudo ln -s ~/.local/bin/uv /usr/local/bin/uv
and restart Claude.
Integration for Cline and other AI agents
Command to start DevBrain MCP in stdio
mode:
uvx --from devbrain devbrain-stdio-server
and add this command to a config file of the AI agent (Cline or other).
Note that DevBrain requires Python 3.10+ support. Most systems have it installed. However VS Code (that Cline depends on) is shipped with Python 3.9. Use correct version of Python when running DevBrain MCP. A corrected version to launch DevBrain MCP looks like this:
uvx --python 3.10 --from devbrain devbrain-stdio-server
where Python version may be 3.10, 3.12, 3.13 (or other that is installed and available on the system).
Docker integration
You can run this MCP as a Docker container in STDIO mode. First build an image with build.sh
. Then add a config to Claude like so:
{
"mcpServers": {
"devbrain": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"mcp-devbrain-stdio:my"
]
}
}
}
Test command to verify that docker container works correctly:
docker run -i --rm mcp-devbrain-stdio:my
License
This project is released under the MIT License and is developed by mimeCam as an open-source initiative.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。