Devpipe MCP Server
Enables AI assistants to interact with devpipe, a local pipeline runner, allowing them to list tasks, run pipelines, validate configurations, debug failures, analyze security findings, and generate CI/CD configs through natural language.
README
Devpipe MCP Server
A Model Context Protocol (MCP) server that enables AI assistants to interact with devpipe - a fast, local pipeline runner for development workflows.
Features
This MCP server provides AI assistants with the ability to:
- 📋 List and analyze tasks from devpipe configurations (with verbose stats)
- 🚀 Run pipelines with full control over execution flags
- ✅ Validate configurations before running
- 📊 Access run results and metrics (JUnit, SARIF)
- 🔍 Debug failures by reading task logs
- 💡 Suggest optimizations for pipeline configurations
- 🛡️ Review security findings from SARIF reports
- 🔧 Auto-detect technologies and suggest missing tasks
- ⚡ Generate task configurations from templates
- 📝 Create complete configs from scratch
- 🔄 Generate CI/CD configs (GitHub Actions, GitLab CI)
Prerequisites
-
Node.js 18 or higher
-
devpipe v0.0.8 or higher installed and accessible in PATH
brew install drewkhoury/tap/devpipeNote: This MCP is optimized for devpipe v0.0.8+ which includes updated default values and improved documentation.
Installation
Option 1: Install from npm (recommended)
npm install -g devpipe-mcp
Option 2: Install from source
git clone https://github.com/drewkhoury/devpipe-mcp.git
cd devpipe-mcp
npm install
npm run build
npm link
Configuration
For Windsurf/Cascade
Add to your Windsurf MCP settings file (usually ~/.windsurf/mcp.json or similar):
{
"mcpServers": {
"devpipe": {
"command": "devpipe-mcp"
}
}
}
For Claude Desktop
Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):
{
"mcpServers": {
"devpipe": {
"command": "devpipe-mcp"
}
}
}
For Other MCP Clients
The server runs on stdio, so you can connect any MCP client using:
devpipe-mcp
Usage
Once configured, you can interact with devpipe through your AI assistant. Here are some example requests:
List Tasks
"Show me all the tasks in my devpipe configuration"
"What tasks are defined in config.toml?"
Run Pipeline
"Run the devpipe pipeline"
"Run only the lint and test tasks"
"Run devpipe with --fast and --fail-fast flags"
"Execute devpipe in dry-run mode"
Validate Configuration
"Validate my devpipe config"
"Check if config.toml is valid"
Debug Failures
"Why did the lint task fail?"
"Show me the logs for the build task"
"What went wrong in the last run?"
Analyze and Optimize
"Analyze my pipeline configuration"
"Suggest optimizations for my devpipe setup"
"How can I make my pipeline faster?"
Create Tasks
"Create a devpipe task for running Go tests"
"Help me add a Python linting task"
"Generate a task configuration for ESLint"
Bootstrap New Projects
"Create a devpipe config for this project"
"Analyze my project and suggest tasks"
"What technologies did you detect in /path/to/project?"
Generate CI/CD
"Generate a GitHub Actions workflow for devpipe"
"Create a GitLab CI config from my devpipe setup"
Security Review
"Review the security findings from my last run"
"What security issues were found?"
"Analyze SARIF results"
MCP Tools
The server provides the following tools:
list_tasks
Parse and list all tasks from a config.toml file.
Parameters:
config(optional): Path to config.toml file
Example:
{
"config": "./config.toml"
}
run_pipeline
Execute devpipe with specified flags.
Parameters:
config(optional): Path to config.tomlonly(optional): Array of task IDs to runskip(optional): Array of task IDs to skipsince(optional): Git reference for change-based runsfixType(optional):auto,helper, ornoneui(optional):basicorfulldashboard(optional): Show dashboard viewfailFast(optional): Stop on first failurefast(optional): Skip slow tasksdryRun(optional): Show what would runverbose(optional): Verbose outputnoColor(optional): Disable colors
Example:
{
"only": ["lint", "test"],
"fast": true,
"failFast": true
}
validate_config
Validate devpipe configuration files.
Parameters:
configs(optional): Array of config file paths
Example:
{
"configs": ["config.toml", "config.prod.toml"]
}
get_last_run
Get results from the most recent pipeline run.
Parameters:
config(optional): Path to config.toml
view_run_logs
Read logs from a specific task or the entire pipeline.
Parameters:
taskId(optional): Task ID to view logs forconfig(optional): Path to config.toml
Example:
{
"taskId": "lint"
}
parse_metrics
Parse JUnit or SARIF metrics files.
Parameters:
metricsPath(required): Path to metrics fileformat(required):junitorsarif
Example:
{
"metricsPath": ".devpipe/runs/latest/metrics.sarif",
"format": "sarif"
}
get_dashboard_data
Extract aggregated data from summary.json.
Parameters:
config(optional): Path to config.toml
check_devpipe
Check if devpipe is installed and get version info.
list_tasks_verbose
List tasks using devpipe list --verbose command with execution statistics.
Parameters:
config(optional): Path to config.toml file
Example:
{
"config": "./config.toml"
}
Output: Shows task table with average execution times and statistics.
analyze_project
Analyze project directory to detect technologies and suggest missing tasks.
Parameters:
projectPath(optional): Path to project directory (defaults to current)
Example:
{
"projectPath": "/path/to/project"
}
Output:
{
"projectPath": "/path/to/project",
"detectedTechnologies": ["Go", "Docker"],
"suggestedTasks": [
{
"technology": "Go",
"taskType": "check-format",
"reason": "go fmt for formatting"
},
{
"technology": "Go",
"taskType": "check-lint",
"reason": "golangci-lint for linting"
}
],
"summary": "Found 2 technologies with 5 suggested tasks"
}
generate_task
Generate task configuration from template for a specific technology or phase header.
Parameters:
technology(required): Technology name (e.g., "Go", "Python", "Node.js", "TypeScript", "Rust") or "phase" for phase headerstaskType(required): Task type (e.g., "check-format", "check-lint", "test-unit", "build") or phase nametaskId(optional): Custom task ID for regular tasks, or description for phase headers
Example (Regular Task):
{
"technology": "Go",
"taskType": "check-lint",
"taskId": "golangci-lint"
}
Output:
[tasks.golangci-lint]
name = "Golang CI Lint"
desc = "Runs comprehensive linting on Go code"
type = "check"
command = "golangci-lint run"
fixType = "auto"
fixCommand = "golangci-lint run --fix"
Example (Phase Header):
{
"technology": "phase",
"taskType": "Validation",
"taskId": "Static analysis and tests"
}
Output:
[tasks.phase-validation]
name = "Validation"
desc = "Static analysis and tests"
Note: Phase headers have no required fields - they're organizational markers. Common practice is to include name or desc (or both), but neither is strictly required.
Supported Technologies:
- Go: check-format, check-lint, check-static, test-unit, build
- Python: check-format, check-lint, check-types, test-unit
- Node.js: check-lint, test-unit, build
- TypeScript: check-types
- phase: Creates phase headers (organizational markers, no command/type)
create_config
Create a complete config.toml file from scratch with auto-detected tasks.
Parameters:
projectPath(optional): Path to project directory (defaults to current)includeDefaults(optional): Include [defaults] section (default: true)autoDetect(optional): Auto-detect technologies and generate tasks (default: true)
Example:
{
"projectPath": "/path/to/project",
"includeDefaults": true,
"autoDetect": true
}
Output: Complete config.toml with:
- Defaults section (outputRoot, fastThreshold=300s, animationRefreshMs=500ms, git settings)
- Task defaults (enabled, workdir)
- Auto-detected tasks organized by phase
- Ready-to-use TOML configuration compatible with devpipe v0.0.8+
Use Case: Bootstrap a new project with devpipe configuration.
Note: Generated configs use devpipe v0.0.8 defaults (fastThreshold=300s, not 5000ms).
generate_ci_config
Generate CI/CD configuration file (GitHub Actions or GitLab CI) from devpipe config.
Parameters:
config(optional): Path to config.toml fileplatform(required):githuborgitlab
Example:
{
"config": "./config.toml",
"platform": "github"
}
Output (GitHub Actions):
name: CI Pipeline
on:
push:
branches: [ main, develop ]
pull_request:
branches: [ main ]
jobs:
devpipe:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install devpipe
run: |
curl -L https://github.com/drewkhoury/devpipe/releases/latest/download/devpipe-linux-amd64 -o devpipe
chmod +x devpipe
sudo mv devpipe /usr/local/bin/
- name: Run devpipe
run: devpipe --fail-fast
- name: Upload results
if: always()
uses: actions/upload-artifact@v4
with:
name: devpipe-results
path: .devpipe/
MCP Resources
The server exposes these resources:
devpipe://config- Current config.toml contentsdevpipe://tasks- All task definitionsdevpipe://last-run- Most recent run resultsdevpipe://summary- Aggregated pipeline summarydevpipe://schema- JSON Schema for config.toml validation (fetched from official devpipe repo)
MCP Prompts
Pre-configured prompts for common workflows:
analyze-config
Analyze the devpipe configuration and suggest improvements.
debug-failure
Help debug why a specific task failed.
Arguments:
taskId(required): The task that failed
optimize-pipeline
Suggest optimizations for the pipeline.
create-task
Help create a new task for a technology.
Arguments:
technology(required): Technology name (e.g., "Go", "Python")taskType(optional):check,build, ortest
security-review
Review SARIF security findings and provide recommendations.
Examples
See EXAMPLES.md for detailed usage examples and workflows.
Quick Example
User: "Run my devpipe pipeline with fast mode"
Assistant: *Uses run_pipeline tool with { "fast": true }*
Result: Pipeline executes, skipping slow tasks
Development
Building from Source
git clone https://github.com/drewkhoury/devpipe-mcp.git
cd devpipe-mcp
npm install
npm run build
Project Structure
devpipe-mcp/
├── src/
│ ├── index.ts # Main MCP server
│ ├── types.ts # Type definitions
│ └── utils.ts # Utility functions
├── examples/ # Example configs
├── dist/ # Compiled output
└── README.md
Watch Mode
npm run watch
Troubleshooting
devpipe not found
If you get "devpipe not found" errors:
# Install devpipe
brew install drewkhoury/tap/devpipe
# Verify installation
devpipe --version
Config file not found
The MCP server searches for config.toml in:
- Current directory
- Parent directories (up to root)
You can also specify the config path explicitly in tool calls.
Permission errors
Ensure the MCP server has permission to:
- Read config files
- Execute devpipe commands
- Access the
.devpipeoutput directory
Contributing
Contributions are welcome! Please see CONTRIBUTING.md for guidelines.
License
MIT License - see LICENSE file for details.
Related Projects
- devpipe - The pipeline runner this MCP server integrates with
- Model Context Protocol - The protocol specification
Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- devpipe: devpipe GitHub
Changelog
See CHANGELOG.md for version history and changes.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。