DINO-X Image Detection MCP Server

DINO-X Image Detection MCP Server

Empower LLMs with fine-grained visual understanding — detect, localize, and describe anything in images with natural language prompts.

Category
访问服务器

README

DINO-X MCP

English | 中文

<p align="center">

Enables large language models to perform fine-grained object detection and image understanding, powered by DINO-X and Grounding DINO 1.6 API.

</p>

💡 Why DINO-X MCP?

Although multimodal models can understand and describe images, they often lack precise localization and high-quality structured outputs for visual content.

With DINO-X MCP, you can:

🧠 Achieve fine-grained image understanding — both full-scene recognition and targeted detection based on natural language.

🎯 Accurately obtain object count, position, and attributes, enabling tasks such as visual question answering.

🧩 Integrate with other MCP Servers to build multi-step visual workflows.

🛠️ Build natural language-driven visual agents for real-world automation scenarios.

🎬 Use Case

🎯 Scenario 📝 Input ✨ Output
Detection & Localization 💬 Prompt:<br>Detect the fire areas in the forest and visualize with Canvas<br><br>🖼️ Input Image:<br><img src="/assets/examples/1-1.jpg" width="280" alt="Original forest fire image"/> <img src="/assets/examples/1-2.png" width="400" alt="Fire detection visualization result"/>
Object Counting 💬 Prompt:<br>Please analyze this warehouse image, detect all the cardboard boxes, count the total number, and create a complete Canvas visualization webpage.<br><br>🖼️ Input Image:<br><img src="/assets/examples/2-1.jpeg" width="280" alt="Warehouse image"/> <img src="/assets/examples/2-2.png" width="400" alt="Box detection result"/>
Feature Detection 💬 Prompt:<br>Find all red cars in the image and visualize with Canvas<br><br>🖼️ Input Image:<br><img src="/assets/examples/4-1.jpg" width="280" alt="Cars image"/> <img src="/assets/examples/4-3.png" width="400" alt="Red car detection result"/>
Attribute Reasoning 💬 Prompt:<br>Find the tallest person in the image, describe their clothing, and visualize the result with Canvas<br><br>🖼️ Input Image:<br><img src="/assets/examples/5-1.jpg" width="280" alt="People image"/> <img src="/assets/examples/5-3.png" width="400" alt="Person detection result"/>
Full Scene Detection 💬 Prompt:<br>Find the fruit with the highest vitamin C content in the image<br><br>🖼️ Input Image:<br><img src="/assets/examples/6-1.png" width="280" alt="Fruits image"/> <img src="/assets/examples/6-3.png" width="400" alt="Fruit detection result"/><br><br>Answer: Kiwi fruit (93mg/100g)
Pose Analysis 💬 Prompt:<br>Please analyze what yoga pose this is and overlay the keypoints on the original image using canvas<br><br>🖼️ Input Image:<br><img src="/assets/examples/3-1.jpg" width="280" alt="Yoga pose image"/> <img src="/assets/examples/3-3.png" width="400" alt="Pose detection result"/>

🚀 Quick Start

1. Prerequisites

Make sure you have Node.js installed. If you don't have Node.js, download it from nodejs.org.

Also, choose an AI assistants and applications that support the MCP Client, including but not limited to:

2. Configure MCP Sever

You can use DINO-X MCP server in two ways:

Option A: Using NPM Package 👍

Add the following configuration in your MCP client:

{
  "mcpServers": {
    "dinox-mcp": {
      "command": "npx",
      "args": ["-y", "@deepdataspace/dinox-mcp"],
      "env": {
        "DINOX_API_KEY": "your-api-key-here"
      }
    }
  }
}

Option B: Using Local Project

First, clone and build the project:

# Clone the project
git clone https://github.com/IDEA-Research/DINO-X-MCP.git
cd DINO-X-MCP

# Install dependencies
pnpm install

# Build the project
pnpm run build

Then configure your MCP client:

{
  "mcpServers": {
    "dinox-mcp": {
      "command": "node",
      "args": ["/path/to/DINO-X-MCP/build/index.js"],
      "env": {
        "DINOX_API_KEY": "your-api-key-here"
      }
    }
  }
}

3. Get API Key

Get your API key from DINO-X Platform (A free quota is available for new users).

Replace your-api-key-here in the configuration above with your actual API key.

4. Available Tools

Restart your MCP client, and you should be able to use the following tools:

Method Name Description Input Output
detect-all-objects Detects and localizes all recognizable objects in an image. Image Category names + bounding boxes + captions
object-detection-by-text Detects and localizes objects in an image based on a natural language prompt. Image + Text prompt Bounding boxes + object captions
detect-human-pose-keypoints Detects 17 human body keypoints per person in an image for pose estimation. Image Keypoint coordinates and captions

📝 Usage

Supported Image Formats

  • Remote URLs starting with https:// 👍
  • Local file paths (starting with file://)
  • Common image formats: jpg, jpeg, png, webp

API Docs

Please refer to DINO-X Platform for API usage limits and pricing information.

🛠️ Development

Watch Mode

During development, you can use watch mode for automatic rebuilding:

pnpm run watch

Debugging

Use MCP Inspector to debug the server:

pnpm run inspector

License

Apache License 2.0

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选