Directus MCP Server
Enables comprehensive management of Directus instances through tools for schema manipulation, content CRUD operations, and dashboard management. It allows AI assistants to programmatically interact with collections, fields, relations, and workflow automation using the official Directus SDK.
README
Directus MCP Server
A Model Context Protocol (MCP) server that provides comprehensive tools for managing Directus schema and content. This server enables AI assistants and other MCP clients to interact with Directus instances programmatically.
Installation
From npm (once published)
npm install -g directus-mcp-server
From source
git clone https://github.com/yourusername/directus-mcp.git
cd directus-mcp
npm install
npm run build
Features
- Schema Management: Create, read, update, and delete collections, fields, and relations
- Content Management: Full CRUD operations on items with advanced querying
- Type Safety: Built with TypeScript and Zod validation
- Official SDK: Uses the official
@directus/sdkfor reliable API interactions - Flexible Authentication: Supports both static tokens and email/password authentication
Installation
npm install
Configuration
Create a .env file in the root directory with your Directus configuration:
# Directus Instance URL
DIRECTUS_URL=https://your-directus-instance.com
# Authentication - Use either token OR email/password
DIRECTUS_TOKEN=your_static_token_here
# Alternative: Email/Password authentication
# DIRECTUS_EMAIL=admin@example.com
# DIRECTUS_PASSWORD=your_password
Authentication Options
-
Static Token (Recommended for production):
- Generate a static token in Directus Admin App
- Set
DIRECTUS_TOKENenvironment variable
-
Email/Password:
- Use for development or when static tokens aren't available
- Set
DIRECTUS_EMAILandDIRECTUS_PASSWORDenvironment variables
Toolset Configuration
The Directus MCP server organizes tools into logical toolsets, similar to GitHub's MCP implementation. This allows you to control which tools are exposed to the MCP client.
Available Toolsets:
default- Contains collections, fields, relations, and content tools (default behavior when no toolset is specified)collections- Collection management tools (list, get, create, update, delete collections)fields- Field management tools (list, create, update, delete fields)relations- Relation management tools (list, create, delete relations)schema- Schema snapshot and diff tools (get snapshot, get diff, apply diff) - NOT included in default toolsetcontent- Content management tools (items CRUD operations)flow- Flow management tools (workflow automation) - NOT included in default toolsetdashboards- Dashboard and panel management tools (list, get, create, update, delete dashboards and panels) - NOT included in default toolsetall- All available tools regardless of toolset membership
Default Behavior:
When MCP_TOOLSETS is not set or empty, only tools in the default toolset are exposed. The default toolset contains collections, fields, relations, and content tools, but not schema, flow, or dashboard tools. Schema, flow, and dashboard tools must be explicitly requested by including schema, flow, or dashboards in the MCP_TOOLSETS environment variable.
Configuration:
Set the MCP_TOOLSETS environment variable to a comma-separated list of toolsets:
# Expose only collections tools
MCP_TOOLSETS=collections
# Expose only schema snapshot/diff tools
MCP_TOOLSETS=schema
# Expose collections and fields tools
MCP_TOOLSETS=collections,fields
# Expose only dashboard and panel tools
MCP_TOOLSETS=dashboards
# Expose all schema-related toolsets
MCP_TOOLSETS=collections,fields,relations,schema
# Expose all toolsets (includes flow and dashboard tools)
MCP_TOOLSETS=default,flow,dashboards
# OR
MCP_TOOLSETS=collections,fields,relations,schema,content,flow,dashboards
# OR simply use 'all' to expose everything
MCP_TOOLSETS=all
Examples:
{
"mcpServers": {
"directus-schema": {
"command": "node",
"args": ["/path/to/directus-mcp/dist/index.js"],
"env": {
"DIRECTUS_URL": "https://your-directus-instance.com",
"DIRECTUS_TOKEN": "your_token",
"MCP_TOOLSETS": "schema"
}
},
"directus-content": {
"command": "node",
"args": ["/path/to/directus-mcp/dist/index.js"],
"env": {
"DIRECTUS_URL": "https://your-directus-instance.com",
"DIRECTUS_TOKEN": "your_token",
"MCP_TOOLSETS": "content"
}
}
}
}
Notes:
- Toolset names are case-insensitive
- Invalid toolset names are ignored (with a warning)
- If all requested toolsets are invalid, the server defaults to the
defaulttoolset - Collections, fields, relations, and content tools belong to both
defaultand their specific toolset - Schema, flow, and dashboard tools belong ONLY to their respective toolsets (not in
default)
Building
npm run build
Usage
Running the Server
npm start
Or use the built binary:
node dist/index.js
MCP Client Configuration
Add to your MCP client configuration (e.g., Claude Desktop, Cline):
Option 1: Using npx (recommended - no installation needed):
{
"mcpServers": {
"directus": {
"command": "npx",
"args": ["-y", "directus-mcp-server"],
"env": {
"DIRECTUS_URL": "https://your-directus-instance.com",
"DIRECTUS_TOKEN": "your_static_token_here",
"MCP_TOOLSETS": "default"
}
}
}
}
Option 2: Using global installation:
{
"mcpServers": {
"directus": {
"command": "directus-mcp",
"env": {
"DIRECTUS_URL": "https://your-directus-instance.com",
"DIRECTUS_TOKEN": "your_static_token_here",
"MCP_TOOLSETS": "default"
}
}
}
}
Option 3: Using local source:
{
"mcpServers": {
"directus": {
"command": "node",
"args": ["/absolute/path/to/directus-mcp/dist/index.js"],
"env": {
"DIRECTUS_URL": "https://your-directus-instance.com",
"DIRECTUS_TOKEN": "your_static_token_here",
"MCP_TOOLSETS": "default"
}
}
}
}
Available Tools
Schema Management Tools
list_collections
List all collections in the Directus instance.
Parameters: None
Example:
{}
get_collection
Get detailed information about a specific collection.
Parameters:
collection(string): Collection name
Example:
{
"collection": "articles"
}
create_collection
Create a new collection (database table) with optional fields. This automatically creates a proper database table, not just a folder.
Parameters:
collection(string): Collection namemeta(object, optional): Collection metadata (icon, note, singleton, etc.)schema(object, optional): Database schema configuration (automatically set if not provided)fields(array, optional): Initial fields to create
Example:
{
"collection": "articles",
"meta": {
"icon": "article",
"note": "Blog articles collection"
},
"fields": [
{
"field": "id",
"type": "integer",
"schema": {
"is_primary_key": true,
"has_auto_increment": true
}
},
{
"field": "title",
"type": "string",
"meta": {
"required": true
}
},
{
"field": "status",
"type": "string",
"meta": {
"interface": "select-dropdown",
"options": {
"choices": [
{"text": "Draft", "value": "draft"},
{"text": "Published", "value": "published"}
]
}
}
}
]
}
update_collection
Update collection metadata.
Parameters:
collection(string): Collection namemeta(object): Metadata to update
Example:
{
"collection": "articles",
"meta": {
"icon": "article",
"note": "Updated description"
}
}
delete_collection
Delete a collection and all its data.
Parameters:
collection(string): Collection name
Example:
{
"collection": "articles"
}
list_fields
List all fields in a collection.
Parameters:
collection(string): Collection name
Example:
{
"collection": "articles"
}
create_field
Add a new field to a collection.
Parameters:
collection(string): Collection namefield(string): Field nametype(string): Field type (string, integer, text, boolean, json, uuid, timestamp, etc.)meta(object, optional): Field metadataschema(object, optional): Database schema configuration
Example:
{
"collection": "articles",
"field": "author",
"type": "uuid",
"meta": {
"interface": "select-dropdown-m2o",
"required": true,
"special": ["m2o"]
}
}
update_field
Update field properties.
Parameters:
collection(string): Collection namefield(string): Field nametype(string, optional): Field typemeta(object, optional): Metadata to updateschema(object, optional): Schema to update
Example:
{
"collection": "articles",
"field": "title",
"meta": {
"note": "Article title (required)"
}
}
delete_field
Remove a field from a collection.
Parameters:
collection(string): Collection namefield(string): Field name
Example:
{
"collection": "articles",
"field": "old_field"
}
list_relations
List all relations in the Directus instance.
Parameters: None
Example:
{}
create_relation
Create a relation between collections.
Parameters:
collection(string): Many collection (with foreign key)field(string): Field name in many collectionrelated_collection(string, optional): One collectionmeta(object, optional): Relation metadataschema(object, optional): Database relation configuration
Example (Many-to-One):
{
"collection": "articles",
"field": "author",
"related_collection": "users",
"schema": {
"on_delete": "SET NULL"
}
}
Example (One-to-Many):
{
"collection": "articles",
"field": "author",
"related_collection": "users",
"meta": {
"one_field": "articles"
}
}
delete_relation
Delete a relation.
Parameters:
collection(string): Collection namefield(string): Field name
Example:
{
"collection": "articles",
"field": "author"
}
Content Management Tools
query_items
Query items with filtering, sorting, and pagination.
Parameters:
collection(string): Collection namefields(array, optional): Fields to returnfilter(object, optional): Filter criteriasearch(string, optional): Search querysort(array, optional): Sort fields (prefix with-for descending)limit(number, optional): Maximum items to returnoffset(number, optional): Items to skippage(number, optional): Page numberaggregate(object, optional): Aggregation functionsgroupBy(array, optional): Group by fieldsdeep(object, optional): Deep relational queries
Filter Operators: _eq, _neq, _lt, _lte, _gt, _gte, _in, _nin, _null, _nnull, _contains, _ncontains, _starts_with, _nstarts_with, _ends_with, _nends_with, _between, _nbetween
Example:
{
"collection": "articles",
"filter": {
"status": {"_eq": "published"},
"date_created": {"_gte": "2024-01-01"}
},
"sort": ["-date_created"],
"limit": 10
}
get_item
Get a single item by ID.
Parameters:
collection(string): Collection nameid(string|number): Item IDfields(array, optional): Fields to returndeep(object, optional): Deep relational queries
Example:
{
"collection": "articles",
"id": 1,
"fields": ["id", "title", "status", "author.first_name"]
}
create_item
Create a new item.
Parameters:
collection(string): Collection namedata(object): Item data
Example:
{
"collection": "articles",
"data": {
"title": "My New Article",
"status": "draft",
"body": "Article content here...",
"author": "user-uuid-here"
}
}
update_item
Update an existing item.
Parameters:
collection(string): Collection nameid(string|number): Item IDdata(object): Fields to update
Example:
{
"collection": "articles",
"id": 1,
"data": {
"status": "published"
}
}
delete_item
Delete an item.
Parameters:
collection(string): Collection nameid(string|number): Item ID
Example:
{
"collection": "articles",
"id": 1
}
bulk_create_items
Create multiple items at once.
Parameters:
collection(string): Collection nameitems(array): Array of item data objects
Example:
{
"collection": "articles",
"items": [
{"title": "Article 1", "status": "draft"},
{"title": "Article 2", "status": "draft"}
]
}
bulk_update_items
Update multiple items at once.
Parameters:
collection(string): Collection nameitems(array): Array of items with id and fields to update
Example:
{
"collection": "articles",
"items": [
{"id": 1, "status": "published"},
{"id": 2, "status": "published"}
]
}
bulk_delete_items
Delete multiple items at once.
Parameters:
collection(string): Collection nameids(array): Array of item IDs
Example:
{
"collection": "articles",
"ids": [1, 2, 3]
}
Common Use Cases
Setting up a new content model
- Create a collection with
create_collection - Add fields with
create_field - Create relations with
create_relation - Start adding content with
create_item
Querying content with relations
{
"collection": "articles",
"fields": ["*", "author.first_name", "author.last_name"],
"filter": {"status": {"_eq": "published"}},
"sort": ["-date_created"],
"limit": 10
}
Bulk operations
Use bulk_create_items, bulk_update_items, or bulk_delete_items for efficient batch operations.
Development
# Watch mode for development
npm run dev
# Build for production
npm run build
Tool Authoring
This project provides utilities to streamline MCP tool development and reduce code duplication:
Tool Helpers
Use createTool for tools that return data, and createActionTool for tools that perform actions:
import { createTool, createActionTool } from './tools/tool-helpers.js';
// Data-returning tool
const myTool = createTool({
name: 'my_tool',
description: 'Description of what the tool does',
inputSchema: MySchema,
toolsets: ['default', 'my-category'],
handler: async (client, args) => client.someMethod(args)
});
// Action tool (returns success message)
const myActionTool = createActionTool({
name: 'delete_something',
description: 'Delete something',
inputSchema: DeleteSchema,
toolsets: ['default'],
handler: async (client, args) => client.deleteMethod(args.id),
successMessage: (args) => `Successfully deleted item ${args.id}`
});
Shared Validators
Common Zod schemas are available in src/tools/validators.ts:
CollectionNameSchema- For collection namesItemIdSchema- For item IDs (string | number)FieldsSchema- For field arraysFilterSchema- For Directus filter objects- Query parameter schemas (
SortSchema,LimitSchema, etc.) - Flow-related schemas (
FlowTriggerSchema,FlowStatusSchema, etc.)
Example usage:
import { CollectionNameSchema, ItemIdSchema } from './tools/validators.js';
const MyToolSchema = z.object({
collection: CollectionNameSchema,
id: ItemIdSchema,
// ... other fields
});
Directus Client Resource Factory
The client uses a resource factory pattern for consistent CRUD operations. When adding new Directus resources, define them in the client constructor using createResourceMethods().
Error Handling
All tools include error handling and will return descriptive error messages for:
- Authentication failures
- Invalid parameters
- API errors
- Network issues
- Validation errors
License
MIT
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。