Divvi MCP Server
Enables AI assistants to automatically integrate Divvi referral tracking into JavaScript/TypeScript blockchain applications by guiding them through SDK installation, transaction modification, and implementation of referral submission following official best practices.
README
Divvi MCP Server
A Model Context Protocol (MCP) server that provides AI assistants with tools for working with the Divvi ecosystem. Currently focuses on automatic integration of the @divvi/referral-sdk into JavaScript/TypeScript blockchain applications, with more Divvi-related functionality planned for future releases.
Overview
Integrating referral tracking into blockchain applications typically requires understanding SDK documentation, modifying transaction flows, and maintaining integration code as protocols evolve. This MCP server eliminates that complexity by turning any AI assistant into a Divvi integration expert that can automatically implement referral tracking following current best practices.
Compatible with any JavaScript/TypeScript blockchain application, including:
- Frontend frameworks: React, Next.js, Vue, Angular, Svelte, vanilla JavaScript
- Backend applications: Node.js, Express, Fastify, serverless functions
- Full-stack frameworks: Next.js, Nuxt, SvelteKit, Remix
- Desktop/mobile: Electron, React Native, Ionic
- Any JS/TS app that makes blockchain transactions
The server currently provides an MCP tool (integrate_divvi_referral_sdk) that:
- 📖 Guides AI agents to read the latest official Divvi SDK documentation
- 🔍 Instructs project analysis to understand the target application structure
- 🔧 Provides integration parameters (consumer address and provider campaigns)
- ✅ Ensures proper implementation following official patterns and best practices
Usage
⚠️ Prerequisites: Before using this tool, you need to install and configure the MCP server. See the Installation section below.
Simple Integration
The easiest way to use this is to simply ask your AI assistant:
"Integrate this dapp with Divvi"
Your AI assistant will guide you through providing the necessary configuration (your Divvi dapp address and campaign addresses) and handle the entire integration process.
Detailed Integration
For more specific control, you can provide the exact parameters:
"Integrate my dapp with Divvi using consumer address 0x1234..."
The AI assistant will:
- Read the latest Divvi SDK documentation
- Analyze your project structure
- Install the SDK if needed
- Modify your blockchain transactions to include referral tracking
- Add referral submission after transactions
Required Information
To complete the integration, you'll need:
- Consumer Address: Your Divvi dapp wallet address (used to register as a builder on Divvi)
Example Tool Call
// The AI assistant will call this internally
integrate_divvi_referral_sdk({
consumerAddress: '0x1234567890123456789012345678901234567890',
})
Key Features
- Always up-to-date: Instructs AI agents to read documentation directly from the official repository
- Universal compatibility: Works with React, Vue, Angular, Node.js, vanilla JS, and any JavaScript/TypeScript framework
- Blockchain library agnostic: Supports viem, ethers, wagmi, and other Web3 libraries
- Non-prescriptive: Provides guidance while letting AI agents use their own capabilities intelligently
- Future-proof: Instructions adapt as the Divvi SDK evolves
- Extensible: Designed to support additional Divvi ecosystem tools and functionality
Technical Note: This integration is implemented as an MCP "tool" rather than a "prompt" type. While the MCP specification includes a prompt type that would be more semantically appropriate for this use case, we chose the tool implementation for broader compatibility, as Cursor doesn't currently support MCP prompts.
Installation
Prerequisites
- Node.js 22+
- An MCP-compatible AI assistant (Claude Desktop, Cursor, Copilot, etc.)
Quick Setup (Recommended)
The easiest way to use the Divvi MCP server is via npm:
Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"divvi-mcp": {
"command": "npx",
"args": ["-y", "@divvi/mcp-server"],
"env": {}
}
}
}
Cursor
Cursor supports MCP servers through its settings. Add the server configuration:
- Open Cursor Settings (Cmd/Ctrl + ,)
- Navigate to "Features" → "Model Context Protocol"
- Add a new MCP server with:
- Name:
divvi-mcp - Command:
npx - Args:
["-y", "@divvi/mcp-server"]
- Name:
Alternatively, if Cursor uses a configuration file, add:
{
"mcpServers": {
"divvi-mcp": {
"command": "npx",
"args": ["-y", "@divvi/mcp-server"]
}
}
}
Other MCP Clients
Configure according to your MCP client's documentation, using:
- Command:
npx - Args:
["-y", "@divvi/mcp-server"]
Local Development Setup
For development or if you prefer building from source:
-
Clone the repository:
git clone https://github.com/divvi-xyz/divvi-mcp.git cd divvi-mcp -
Install dependencies:
yarn install -
Build the server:
yarn build -
Configure your AI assistant to point to the local build:
Use
nodeas the command and["/path/to/divvi-mcp/dist/index.js"]as the args in your MCP client configuration.
How It Works
1. Documentation-Driven Integration
The tool instructs AI agents to read the official SDK documentation from:
https://raw.githubusercontent.com/divvi-xyz/divvi-referral-sdk/refs/heads/main/README.md
This ensures the integration always follows the latest patterns and examples.
2. Project Analysis
AI agents analyze the target project to understand:
- Package manager (npm/yarn)
- JavaScript/TypeScript framework being used
- Blockchain libraries (viem, ethers, wagmi)
- Existing transaction patterns
- Account management approach
3. SDK Integration
Following the official documentation, AI agents implement:
- SDK installation
- Import statements
- Transaction modifications (adding referral tags)
- Referral submission after transactions
- Proper error handling
4. Validation
The integration ensures:
- All blockchain transactions include referral tracking
- Referral failures don't break existing transaction flows
- Code follows project conventions
- Integration uses the provided addresses correctly
Development
Local Development
# Start in development mode
yarn dev
# Run tests
yarn test
# Type checking
yarn typecheck
# Linting
yarn lint
# Format code
yarn format
Project Structure
src/
├── index.ts # Main MCP server implementation
├── index.test.ts # Unit tests
└── ...
scripts/ # Build and utility scripts
dist/ # Compiled output
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/my-feature - Make your changes following the existing code style
- Add tests for new functionality
- Run the test suite:
yarn test - Submit a pull request
API Reference
Current Tools
Tool: integrate_divvi_referral_sdk
Provides instructions for integrating the @divvi/referral-sdk into a project.
Parameters
| Parameter | Type | Required | Description |
|---|---|---|---|
consumerAddress |
string | Yes | Your Divvi dapp wallet address (builder registration) |
Returns
Comprehensive integration instructions that guide AI agents through:
- Reading official documentation
- Analyzing project structure
- Implementing the integration
- Validating the result
Future Tools
Additional tools for the Divvi ecosystem are planned for future releases. These may include:
- Data integration: Helpers for tracking referral performance and metrics
- Protocol interaction: Direct interaction with Divvi protocol contracts
- Campaign management: Tools for creating and managing referral campaigns
Stay tuned for updates as we expand the server's capabilities!
Related Projects
- @divvi/referral-sdk: The core TypeScript SDK for Divvi integration
- Divvi Protocol: The main Divvi ecosystem repositories
Support
- Documentation: Divvi SDK Docs
- Issues: GitHub Issues
- Discussions: GitHub Discussions
License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
Built with ❤️ for the Divvi ecosystem
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。