DocAgent
AI-powered document generation suite that creates comprehensive software documentation including requirements, design specs, test strategies, and deployment guides through LangGraph workflows. Integrates with Cursor IDE via MCP to transform project ideas into professional documentation suites.
README
DocAgent - AI-Powered Document Generation Suite
AI-powered document generation suite with LangGraph workflows and Cursor IDE integration via MCP (Model Context Protocol)
DocAgent is a comprehensive document generation system that creates professional software documentation using AI. It integrates seamlessly with Cursor IDE through MCP servers and supports 12 different document types with orchestrated workflows.
🚀 Features
Document Types
- 📋 Business Requirements (BRD/PRD) - Product and business requirement documents
- ⚙️ Functional Requirements (FRD) - Detailed functional specifications
- 🏗️ System Requirements (SRD) - System architecture and requirements
- 🧪 Technical Requirements (TRD/TDD) - Technical design and test documents
- 🗄️ Database Design (ERD/API) - Entity relationship diagrams and API specs
- 🎨 UI/UX Design - Wireframes and design system documentation
- 📊 Project Planning - Project plans and milestone tracking
- ✅ Test Strategy - Comprehensive testing documentation
- 🚀 CI/CD Documentation - Deployment and environment setup
- 📦 Release Runbooks - Release procedures and rollback plans
Core Capabilities
- 🔄 LangGraph Workflows - Parallel document generation with conditional logic
- 🎯 Smart Orchestration - Profile-based generation (Full, Lean, Tech-only, PM-only)
- 💻 Cursor IDE Integration - Native MCP server integration
- 🛡️ Safe File Operations - Collision detection and backup systems
- 📝 Jinja2 Templates - Customizable document templates
- ⚡ FastMCP v2 - Modern MCP protocol implementation
- 🔧 CLI Tools - Command-line interface for batch operations
📦 Installation
Prerequisites
- Python 3.9+
- Cursor IDE
- Git
Quick Setup
# Clone the repository
git clone https://github.com/vinnyfds/docagent.git
cd docagent
# Install dependencies
pip install -r requirements.txt
# Create environment file
cp .env.template .env
# Edit .env with your API keys
# Verify installation
python scripts/verify_mcp.py
Cursor IDE Integration
# Install FastMCP
pip install fastmcp
# The MCP servers will be automatically configured in Cursor
# Restart Cursor to load the DocAgent tools
🎯 Quick Start
Using Cursor IDE (Recommended)
- Open any file in Cursor
- Type
/to open command palette - Look for DocAgent tools:
ping()- Health checkgenerate_all()- Generate all documentsorchestrate_docgen()- Profile-based generation
Using CLI
# Generate all documents
python scripts/cli_generate.py --idea tests/fixtures/idea_sample.json --all
# Generate specific documents
python scripts/cli_generate.py --idea my_idea.json --docs brd_prd frd srd
# Use orchestration profiles
python -c "
from orchestrator.graph import orchestrate_docgen
from docs_agent.state import Idea
import json
with open('tests/fixtures/idea_sample.json') as f:
data = json.load(f)
idea = Idea(**data)
result = orchestrate_docgen(idea, profile='lean', overwrite=False)
print('Generated:', result)
"
🏗️ Architecture
System Overview
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Cursor IDE │◄──►│ FastMCP Server │◄──►│ LangGraph │
│ │ │ │ │ Workflow │
│ - Command Palette│ │ - DocGenAgent │ │ │
│ - Tools Integration │ │ - Orchestrator │ │ - Parallel Nodes│
│ - MCP Protocol │ │ - Tool Registry │ │ - Conditional │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│
▼
┌──────────────────┐
│ Document Engine │
│ │
│ - Jinja2 Templates│
│ - Safe File Ops │
│ - Output Manager │
└──────────────────┘
Project Structure
docagent/
├── docs_agent/ # Core document generation agent
│ ├── __init__.py # Package initialization
│ ├── state.py # Pydantic models (Idea, Context, DocRequest)
│ ├── graph.py # LangGraph workflow definition
│ ├── server.py # FastMCP server implementation
│ ├── nodes/ # Document generation nodes
│ │ ├── brd_prd.py # Business requirements
│ │ ├── frd.py # Functional requirements
│ │ ├── srd.py # System requirements
│ │ └── ... # Other document types
│ ├── prompts/ # Jinja2 templates
│ │ ├── brd_prd.md.jinja
│ │ ├── openapi.yaml.jinja
│ │ └── ...
│ └── utils/ # Utilities
│ ├── render.py # Template rendering
│ └── safety.py # Safe file operations
├── orchestrator/ # Orchestration layer
│ ├── graph.py # Orchestration logic
│ └── server.py # Orchestrator MCP server
├── scripts/ # CLI and utilities
│ ├── cli_generate.py # Command-line interface
│ ├── verify_mcp.py # Installation verification
│ └── test_mcp_servers.py # Server testing
├── tests/ # Test suite
│ └── fixtures/ # Test data
│ └── idea_sample.json
├── outputs/ # Generated documents
├── .cursor_rules # Cursor IDE guardrails
├── requirements.txt # Python dependencies
├── .env.template # Environment template
└── README.md # This file
🎮 Usage Examples
Idea Structure
{
"title": "E-commerce Platform",
"description": "Modern e-commerce platform with AI recommendations",
"context": {
"domain": "E-commerce",
"stakeholders": ["Product Manager", "Engineering Team", "UX Designer"],
"timeline": "6 months",
"budget": "$500K"
},
"personas": [
{"name": "Customer", "description": "Online shoppers"},
{"name": "Admin", "description": "Platform administrators"}
],
"modules": [
{"name": "User Management", "description": "User registration and profiles"},
{"name": "Product Catalog", "description": "Product browsing and search"},
{"name": "Shopping Cart", "description": "Cart and checkout functionality"}
],
"entities": [
{"name": "User", "fields": ["id", "email", "profile"]},
{"name": "Product", "fields": ["id", "name", "price", "inventory"]}
],
"apis": [
{"name": "User API", "methods": ["GET", "POST", "PUT", "DELETE"]},
{"name": "Product API", "methods": ["GET", "POST", "PUT"]}
]
}
Orchestration Profiles
PROFILES = {
"full": [
"brd_prd", "frd", "srd", "trd_tdd", "erd_api",
"ui_wireframes", "project_plan", "test_strategy",
"cicd_env", "release_runbook"
],
"lean": ["brd_prd", "frd", "srd", "erd_api"],
"tech_only": ["srd", "trd_tdd", "erd_api", "cicd_env"],
"pm_only": ["brd_prd", "project_plan", "test_strategy", "release_runbook"]
}
🛠️ Development
Running Tests
# Run verification tests
python scripts/verify_mcp.py
# Test MCP servers
python scripts/test_mcp_servers.py
# Generate sample documents
python scripts/cli_generate.py --idea tests/fixtures/idea_sample.json --all
Code Quality
# Install development dependencies
pip install ruff pytest
# Run linting
ruff check .
# Run tests
pytest -v
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
🔧 Configuration
Environment Variables
# Required
OPENAI_API_KEY=your_openai_api_key_here
# Optional
DOCGEN_BUCKET=your_s3_bucket_for_outputs
ALLOW_OVERWRITE=false
LOG_LEVEL=INFO
ENVIRONMENT=development
MCP_HOST=localhost
MCP_PORT=3000
Cursor MCP Setup
The MCP servers are automatically configured for Cursor IDE. Manual configuration:
{
"mcpServers": {
"DocGenAgent": {
"command": "cmd",
"args": ["/c", "python", "docs_agent/server.py"],
"cwd": "/path/to/docagent"
},
"DocGenOrchestrator": {
"command": "cmd",
"args": ["/c", "python", "orchestrator/server.py"],
"cwd": "/path/to/docagent"
}
}
}
📚 Documentation
🚀 Deployment
AWS Lambda (Coming Soon)
# Package for serverless deployment
npm install -g serverless
serverless deploy
Docker
# Build container
docker build -t docagent .
# Run container
docker run -p 3000:3000 docagent
🤝 Contributing
We welcome contributions! Please see our Contributing Guide for details.
Contributors
- @vinnyfds - Creator & Maintainer
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- LangGraph - Workflow orchestration
- FastMCP - MCP server framework
- Cursor IDE - AI-powered development environment
- Jinja2 - Template engine
📧 Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: vinnyfds@gmail.com
🎯 Transform your ideas into comprehensive documentation with AI-powered precision!
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。