Docker MCP Server
Enables natural language management of Docker containers, images, networks, and volumes with support for both local and remote Docker engines. Features automated container composition, debugging capabilities, and persistent data management through an intuitive conversational interface.
README
🐋 Docker MCP server
An MCP server for managing Docker with natural language!
🪩 What can it do?
- 🚀 Compose containers with natural language
- 🔍 Introspect & debug running containers
- 📀 Manage persistent data with Docker volumes
❓ Who is this for?
- Server administrators: connect to remote Docker engines for e.g. managing a public-facing website.
- Tinkerers: run containers locally and experiment with open-source apps supporting Docker.
- AI enthusiasts: push the limits of that an LLM is capable of!
Demo
A quick demo showing a WordPress deployment using natural language:
https://github.com/user-attachments/assets/65e35e67-bce0-4449-af7e-9f4dd773b4b3
🏎️ Quickstart
Install
Claude Desktop
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
<details> <summary>Install from PyPi with uv</summary>
If you don't have uv installed, follow the installation instructions for your
system:
link
Then add the following to your MCP servers file:
"mcpServers": {
"mcp-server-docker": {
"command": "uvx",
"args": [
"mcp-server-docker"
]
}
}
</details>
<details> <summary>Install with Docker</summary>
Purely for convenience, the server can run in a Docker container.
After cloning this repository, build the Docker image:
docker build -t mcp-server-docker .
And then add the following to your MCP servers file:
"mcpServers": {
"mcp-server-docker": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-v",
"/var/run/docker.sock:/var/run/docker.sock",
"mcp-server-docker:latest"
]
}
}
Note that we mount the Docker socket as a volume; this ensures the MCP server can connect to and control the local Docker daemon.
</details>
📝 Prompts
🎻 docker_compose
Use natural language to compose containers. See above for a demo.
Provide a Project Name, and a description of desired containers, and let the LLM do the rest.
This prompt instructs the LLM to enter a plan+apply loop. Your interaction
with the LLM will involve the following steps:
- You give the LLM instructions for which containers to bring up
- The LLM calculates a concise natural language plan and presents it to you
- You either:
- Apply the plan
- Provide the LLM feedback, and the LLM recalculates the plan
Examples
- name:
nginx, containers: "deploy an nginx container exposing it on port 9000" - name:
wordpress, containers: "deploy a WordPress container and a supporting MySQL container, exposing Wordpress on port 9000"
Resuming a Project
When starting a new chat with this prompt, the LLM will receive the status of
any containers, volumes, and networks created with the given project name.
This is mainly useful for cleaning up, in-case you lose a chat that was responsible for many containers.
📔 Resources
The server implements a couple resources for every container:
- Stats: CPU, memory, etc. for a container
- Logs: tail some logs from a container
🔨 Tools
Containers
list_containerscreate_containerrun_containerrecreate_containerstart_containerfetch_container_logsstop_containerremove_container
Images
list_imagespull_imagepush_imagebuild_imageremove_image
Networks
list_networkscreate_networkremove_network
Volumes
list_volumescreate_volumeremove_volume
🚧 Disclaimers
Sensitive Data
DO NOT CONFIGURE CONTAINERS WITH SENSITIVE DATA. This includes API keys, database passwords, etc.
Any sensitive data exchanged with the LLM is inherently compromised, unless the LLM is running on your local machine.
If you are interested in securely passing secrets to containers, file an issue on this repository with your use-case.
Reviewing Created Containers
Be careful to review the containers that the LLM creates. Docker is not a secure sandbox, and therefore the MCP server can potentially impact the host machine through Docker.
For safety reasons, this MCP server doesn't support sensitive Docker options
like --privileged or --cap-add/--cap-drop. If these features are of interest
to you, file an issue on this repository with your use-case.
🛠️ Configuration
This server uses the Python Docker SDK's from_env method. For configuration
details, see
the documentation.
Connect to Docker over SSH
This MCP server can connect to a remote Docker daemon over SSH.
Simply set a ssh:// host URL in the MCP server definition:
"mcpServers": {
"mcp-server-docker": {
"command": "uvx",
"args": [
"mcp-server-docker"
],
"env": {
"DOCKER_HOST": "ssh://myusername@myhost.example.com"
}
}
}
💻 Development
Prefer using Devbox to configure your development environment.
See the devbox.json for helpful development commands.
After setting up devbox you can configure your Claude MCP config to use it:
"docker": {
"command": "/path/to/repo/.devbox/nix/profile/default/bin/uv",
"args": [
"--directory",
"/path/to/repo/",
"run",
"mcp-server-docker"
]
},
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。