Doctah-MCP

Doctah-MCP

Enables AI assistants to search and access Arknights game data including operator information, enemy intelligence, skills, talents, and attributes through PRTS.wiki integration. Provides fuzzy search functionality for operators and enemies with clean Markdown output.

Category
访问服务器

README

<div align="center">

<img src="./assets/images/doctah-mcp-logo.png" alt="Doctah-MCP Logo" width="150" height="150">

Doctah-MCP

License: MIT Python 3.10+ MCP

🌍 Language / 语言选择: 🇺🇸 English | 🇨🇳 中文

</div>

🎯 Enable AI assistants to search and access Arknights game data through a simple MCP interface.

The Doctah-MCP Server provides a bridge between AI assistants and PRTS.wiki's Arknights repository through the Model Context Protocol (MCP). It allows AI models to search for operators and enemies and access their content in a programmatic way.

✨ Core Features

  • 🎯 Operator Search: Query detailed operator information including skills, talents, and attributes
  • ⚔️ Enemy Intelligence: Access comprehensive enemy data with level progression
  • 📋 List Search: Find operators and enemies with fuzzy search functionality
  • 🔍 Content Verification: Smart content validation to distinguish operators from enemies
  • 🤖 AI-Friendly: Clean Markdown output with consistent structure

🚀 Quick Start

Install from Source

git clone https://github.com/TonybotNi/Doctah-MCP.git
cd doctah-mcp
pip install -e .

Verify installation:

# Test if global command works
doctah-mcp --help

# Or test with Python module
python -m doctah_mcp.server --help

For development:

# Clone and set up development environment
git clone https://github.com/TonybotNi/Doctah-MCP.git
cd doctah-mcp

# Install with test dependencies
pip install -e ".[dev]"

🔌 MCP Integration

Choose one of the following configuration methods for your MCP client config file:

Method 1: Using global command (recommended)

{
    "mcpServers": {
        "doctah-mcp": {
            "command": "doctah-mcp",
            // Or use full path: "/full/path/to/doctah-mcp"
            "args": []
        }
    }
}

💡 If doctah-mcp command is not found, use Method 3 with full path to python executable

Method 2: Using Python module

{
    "mcpServers": {
        "doctah-mcp": {
            "command": "python",
            "args": ["-m", "doctah_mcp.server"]
        }
    }
}

Method 3: Using full path (most reliable)

{
    "mcpServers": {
        "doctah-mcp": {
            "command": "/full/path/to/python",
            "args": ["-m", "doctah_mcp.server"],
            "cwd": "/path/to/doctah-mcp-folder"
        }
    }
}

💡 Note: cwd is the working directory, only needed in method 3, pointing to your downloaded doctah-mcp project folder

💡 Available Tools

The server provides four main tools:

1. Operator Search

Search for detailed operator information:

result = await call_tool("search_operator_mcp", {
    "name": "Amiya",
    "sections": "skills,talents"
})

2. Enemy Search

Get comprehensive enemy data:

result = await call_tool("search_enemy_mcp", {
    "name": "Originium Slug",
    "sections": "level0,level1"
})

3. List Operators

Find operators matching a pattern:

result = await call_tool("list_operators_mcp", {
    "name": "guard"
})

4. List Enemies

Find enemies matching a pattern:

result = await call_tool("list_enemies_mcp", {
    "name": "drone"
})

📁 Client Configuration

Claude Desktop

Configuration file locations:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json

Recommended configuration (simplest):

{
  "mcpServers": {
    "doctah-mcp": {
      "command": "doctah-mcp",
      "args": []
    }
  }
}

Fallback configuration (if above doesn't work):

{
  "mcpServers": {
    "doctah-mcp": {
      "command": "/full/path/to/python",
      "args": ["-m", "doctah_mcp.server"],
      "cwd": "/path/to/doctah-mcp-folder"
    }
  }
}

Cherry Studio

  1. Open Cherry Studio → Settings → MCP Servers → Add
  2. Select Type: STDIO
  3. Simple configuration:
    • Command: doctah-mcp
    • Args: []
  4. Fallback configuration (if above doesn't work):
    • Command: /full/path/to/python
    • Args: ["-m", "doctah_mcp.server"]
    • Cwd: /path/to/doctah-mcp-folder

⚙️ Configuration

Configure through environment variables:

Variable Purpose Default
LOG_LEVEL Logging level INFO

🧪 Testing

Run the test suite:

python -m pytest

📄 License

Released under the MIT License. See the LICENSE file for details.

📖 Detailed Setup Guides

Need more detailed configuration and troubleshooting? Check out:


<div align="center">

Made with ❤️ for Arknights community

GitHub Star History

Star History Chart

</div>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选