Document Organizer MCP Server

Document Organizer MCP Server

Enables systematic document organization with PDF-to-Markdown conversion, intelligent categorization, and automated workflow management. Supports project documentation standards and provides complete end-to-end document processing pipelines.

Category
访问服务器

README

Document Organizer MCP Server

CI/CD Pipeline npm version License: MIT

A powerful Model Context Protocol (MCP) server for systematic document organization, PDF-to-Markdown conversion, and Universal Project Documentation Standard implementation.

Features

🔄 PDF Conversion Engine

  • Dual Engine Support: marker (recommended) and pymupdf4llm
  • Intelligent Table Preservation: Advanced table-aware cleaning
  • Image Extraction: Optional embedded image extraction
  • Memory Efficient: Configurable processing for large documents
  • Auto-Cleaning: Removes marker formatting artifacts automatically

📊 Document Organization

  • Recursive PDF Discovery: Comprehensive file system scanning
  • Conversion Status Auditing: Track converted vs unconverted documents
  • Intelligent Categorization: Keyword-based content analysis
  • Automated Folder Organization: Category-based directory structures
  • Full Workflow Automation: End-to-end document processing pipeline

📋 Universal Project Documentation Standard

  • Standardized Structure: Consistent documentation across all projects
  • Status-Driven Plans: ACTIVE, ARCHIVED, SUPERSEDED, BLOCKED statuses
  • Weekly Progress Tracking: Automated handoff documentation
  • Compliance Validation: Ensure adherence to documentation standards
  • Template Generation: Project-specific documentation templates

Installation

npm install -g document-organizer-mcp

Dependencies

For PDF conversion functionality, install one or both engines:

# Marker (recommended for complex documents)
pip install marker-pdf

# pymupdf4llm (lightweight alternative)
pip install pymupdf4llm

Usage

MCP Configuration

Add to your MCP client configuration:

{
  "mcpServers": {
    "document-organizer": {
      "command": "document-organizer-mcp",
      "args": []
    }
  }
}

Available Tools

PDF Conversion Tools

  • convert_pdf - Convert PDF to Markdown with configurable options
  • check_dependency - Verify and optionally install conversion engines

Document Organization Tools

  • document_organizer__discover_pdfs - Recursively find all PDF files
  • document_organizer__check_conversions - Audit conversion status
  • document_organizer__convert_missing - Convert only unconverted PDFs
  • document_organizer__analyze_content - Categorize documents by content
  • document_organizer__organize_structure - Create organized folder hierarchies
  • document_organizer__full_workflow - Complete automation pipeline

Documentation Standard Tools

  • document_organizer__init_project_docs - Initialize standard documentation structure
  • document_organizer__validate_doc_structure - Validate compliance
  • document_organizer__archive_plan - Archive development plans
  • document_organizer__create_weekly_handoff - Generate progress reports

Examples

Basic PDF Conversion

// Convert a single PDF using marker engine
await client.callTool("convert_pdf", {
  pdf_path: "/path/to/document.pdf",
  output_path: "/path/to/output.md",
  options: {
    engine: "marker",
    auto_clean: true
  }
});

Full Document Organization Workflow

// Discover, convert, and organize all documents
await client.callTool("document_organizer__full_workflow", {
  directory_path: "/path/to/documents",
  analyze_content: true
});

Initialize Project Documentation

// Set up Universal Project Documentation Standard
await client.callTool("document_organizer__init_project_docs", {
  directory_path: "/path/to/project",
  project_name: "My Project",
  project_type: "web-app"
});

Configuration Options

PDF Conversion Options

interface ConversionOptions {
  engine?: "marker" | "pymupdf4llm";     // Conversion engine
  auto_clean?: boolean;                  // Auto-clean marker output
  page_chunks?: boolean;                 // Process as individual pages
  write_images?: boolean;                // Extract embedded images
  image_path?: string;                   // Image extraction directory
  table_strategy?: "fast" | "accurate";  // Table extraction strategy
  extract_content?: "text" | "figures" | "both"; // Content types
}

Document Categories

Automatic categorization supports:

  • Research: Analysis, studies, investigations
  • Planning: Strategies, roadmaps, discussions
  • Documentation: Guides, manuals, references
  • Technical: Implementation, architecture, APIs
  • Business: Market analysis, commercial strategies
  • General: Uncategorized content

Universal Project Documentation Standard

Required Files

  • CURRENT_STATUS.md - Real-time project status
  • ACTIVE_PLAN.md - Currently executing plan
  • .claude-instructions.md - AI assistant instructions

Directory Structure

/docs/
├── plans/
│   ├── archived/     # Completed plans
│   └── superseded/   # Replaced plans
├── progress/YYYY-MM/ # Monthly progress logs
└── reference/        # Technical documentation
    ├── 01-architecture/
    ├── 02-apis/
    ├── 03-development/
    └── ...

Status Management

  • ACTIVE: Currently executing plan
  • ARCHIVED: Historical/completed plan
  • SUPERSEDED: Replaced by newer plan
  • BLOCKED: Waiting for external input

Development

# Clone repository
git clone https://github.com/cordlesssteve/document-organizer-mcp.git
cd document-organizer-mcp

# Install dependencies
npm install

# Build project
npm run build

# Run development mode
npm run dev

# Run tests
npm test

# Lint code
npm run lint

Performance Considerations

  • Memory Efficiency: Use page_chunks: true for large PDFs
  • Processing Speed: marker is slower but higher quality than pymupdf4llm
  • Batch Processing: convert_missing tool optimizes bulk conversions
  • Table Preservation: marker with auto-cleaning provides best table formatting

Error Handling

The server provides comprehensive error handling:

  • Dependency validation before operations
  • Graceful fallback between conversion engines
  • Detailed error messages with context
  • Progress tracking for long-running operations

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Ensure all tests pass
  6. Submit a pull request

License

MIT License - see LICENSE file for details.

Support

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选