
Document Organizer MCP Server
Enables systematic document organization with PDF-to-Markdown conversion, intelligent categorization, and automated workflow management. Supports project documentation standards and provides complete end-to-end document processing pipelines.
README
Document Organizer MCP Server
A powerful Model Context Protocol (MCP) server for systematic document organization, PDF-to-Markdown conversion, and Universal Project Documentation Standard implementation.
Features
🔄 PDF Conversion Engine
- Dual Engine Support: marker (recommended) and pymupdf4llm
- Intelligent Table Preservation: Advanced table-aware cleaning
- Image Extraction: Optional embedded image extraction
- Memory Efficient: Configurable processing for large documents
- Auto-Cleaning: Removes marker formatting artifacts automatically
📊 Document Organization
- Recursive PDF Discovery: Comprehensive file system scanning
- Conversion Status Auditing: Track converted vs unconverted documents
- Intelligent Categorization: Keyword-based content analysis
- Automated Folder Organization: Category-based directory structures
- Full Workflow Automation: End-to-end document processing pipeline
📋 Universal Project Documentation Standard
- Standardized Structure: Consistent documentation across all projects
- Status-Driven Plans: ACTIVE, ARCHIVED, SUPERSEDED, BLOCKED statuses
- Weekly Progress Tracking: Automated handoff documentation
- Compliance Validation: Ensure adherence to documentation standards
- Template Generation: Project-specific documentation templates
Installation
npm install -g document-organizer-mcp
Dependencies
For PDF conversion functionality, install one or both engines:
# Marker (recommended for complex documents)
pip install marker-pdf
# pymupdf4llm (lightweight alternative)
pip install pymupdf4llm
Usage
MCP Configuration
Add to your MCP client configuration:
{
"mcpServers": {
"document-organizer": {
"command": "document-organizer-mcp",
"args": []
}
}
}
Available Tools
PDF Conversion Tools
convert_pdf
- Convert PDF to Markdown with configurable optionscheck_dependency
- Verify and optionally install conversion engines
Document Organization Tools
document_organizer__discover_pdfs
- Recursively find all PDF filesdocument_organizer__check_conversions
- Audit conversion statusdocument_organizer__convert_missing
- Convert only unconverted PDFsdocument_organizer__analyze_content
- Categorize documents by contentdocument_organizer__organize_structure
- Create organized folder hierarchiesdocument_organizer__full_workflow
- Complete automation pipeline
Documentation Standard Tools
document_organizer__init_project_docs
- Initialize standard documentation structuredocument_organizer__validate_doc_structure
- Validate compliancedocument_organizer__archive_plan
- Archive development plansdocument_organizer__create_weekly_handoff
- Generate progress reports
Examples
Basic PDF Conversion
// Convert a single PDF using marker engine
await client.callTool("convert_pdf", {
pdf_path: "/path/to/document.pdf",
output_path: "/path/to/output.md",
options: {
engine: "marker",
auto_clean: true
}
});
Full Document Organization Workflow
// Discover, convert, and organize all documents
await client.callTool("document_organizer__full_workflow", {
directory_path: "/path/to/documents",
analyze_content: true
});
Initialize Project Documentation
// Set up Universal Project Documentation Standard
await client.callTool("document_organizer__init_project_docs", {
directory_path: "/path/to/project",
project_name: "My Project",
project_type: "web-app"
});
Configuration Options
PDF Conversion Options
interface ConversionOptions {
engine?: "marker" | "pymupdf4llm"; // Conversion engine
auto_clean?: boolean; // Auto-clean marker output
page_chunks?: boolean; // Process as individual pages
write_images?: boolean; // Extract embedded images
image_path?: string; // Image extraction directory
table_strategy?: "fast" | "accurate"; // Table extraction strategy
extract_content?: "text" | "figures" | "both"; // Content types
}
Document Categories
Automatic categorization supports:
- Research: Analysis, studies, investigations
- Planning: Strategies, roadmaps, discussions
- Documentation: Guides, manuals, references
- Technical: Implementation, architecture, APIs
- Business: Market analysis, commercial strategies
- General: Uncategorized content
Universal Project Documentation Standard
Required Files
CURRENT_STATUS.md
- Real-time project statusACTIVE_PLAN.md
- Currently executing plan.claude-instructions.md
- AI assistant instructions
Directory Structure
/docs/
├── plans/
│ ├── archived/ # Completed plans
│ └── superseded/ # Replaced plans
├── progress/YYYY-MM/ # Monthly progress logs
└── reference/ # Technical documentation
├── 01-architecture/
├── 02-apis/
├── 03-development/
└── ...
Status Management
- ACTIVE: Currently executing plan
- ARCHIVED: Historical/completed plan
- SUPERSEDED: Replaced by newer plan
- BLOCKED: Waiting for external input
Development
# Clone repository
git clone https://github.com/cordlesssteve/document-organizer-mcp.git
cd document-organizer-mcp
# Install dependencies
npm install
# Build project
npm run build
# Run development mode
npm run dev
# Run tests
npm test
# Lint code
npm run lint
Performance Considerations
- Memory Efficiency: Use
page_chunks: true
for large PDFs - Processing Speed: marker is slower but higher quality than pymupdf4llm
- Batch Processing:
convert_missing
tool optimizes bulk conversions - Table Preservation: marker with auto-cleaning provides best table formatting
Error Handling
The server provides comprehensive error handling:
- Dependency validation before operations
- Graceful fallback between conversion engines
- Detailed error messages with context
- Progress tracking for long-running operations
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Ensure all tests pass
- Submit a pull request
License
MIT License - see LICENSE file for details.
Support
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。