Document Parser MCP

Document Parser MCP

An MCP server that uses the Docling toolkit to convert various document formats, including PDFs, Office files, images, and audio, into clean Markdown for AI processing. It supports multiple processing pipelines like VLM and ASR with intelligent auto-detection and job queue management.

Category
访问服务器

README

Document Parser MCP

A Model Context Protocol (MCP) server that provides intelligent document parsing and conversion capabilities using the Docling toolkit. Convert any document (PDF, DOCX, images, audio, etc.) into clean Markdown for AI processing and RAG pipelines.

Features

  • Universal Document Support: PDFs, Office documents (DOCX/XLSX/PPTX), images, HTML, Markdown, audio files, and more
  • Multiple Processing Pipelines:
    • Standard: Fast, high-quality conversion with advanced layout analysis
    • VLM: Vision-language models for complex layouts and handwritten content
    • ASR: Automatic speech recognition for audio transcription
  • Intelligent Auto-Detection: Automatically selects optimal pipeline based on file type
  • Concurrent Processing: Built-in job queue for handling multiple requests
  • MCP Integration: Seamless integration with Claude Desktop and other MCP clients
  • Clean Markdown Output: High-quality structured text ready for AI consumption

Installation

Prerequisites

  • Python 3.9 or higher
  • 8GB+ RAM recommended

Quick Start

  1. Clone the repository:
git clone <repository-url>
cd document-parser-mcp
  1. Create virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Install Docling with optional features:
# Core Docling
pip install docling

# For Apple Silicon MLX acceleration
pip install docling[mlx]

# Optional OCR engines
pip install easyocr

Usage

Running the Server

Start the MCP server:

python -m document_parser

With custom configuration:

python -m document_parser --config /path/to/config.yaml

With debug logging:

python -m document_parser --debug

Configuration

The server is configured via config.yaml. Key settings:

server:
  name: document-parser-mcp
  max_concurrent_jobs: 3
  job_timeout_seconds: 600

processing:
  default_pipeline: standard
  enable_pipeline_auto_detect: true

  ocr:
    engine: easyocr
    languages: [eng]

  pdf:
    backend: dlparse_v4
    table_accuracy_mode: accurate

See Configuration Guide for detailed options.

MCP Tools

The server provides the following MCP tools:

parse_document

Parse any document to Markdown.

Parameters:

  • source (required): File path or URL to the document
  • pipeline (optional): Processing pipeline - standard, vlm, or asr
  • options (optional): Additional processing options

Example:

{
  "name": "parse_document",
  "arguments": {
    "source": "https://arxiv.org/pdf/2408.09869",
    "pipeline": "standard"
  }
}

parse_document_advanced

Advanced parsing with detailed configuration.

Parameters:

  • source (required): File path or URL
  • pipeline (optional): Processing pipeline
  • ocr_enabled (optional): Enable/disable OCR
  • table_accuracy_mode (optional): fast or accurate
  • pdf_backend (optional): PDF processing backend
  • enable_enrichments (optional): Enable code/formula enrichments

get_job_status

Get the status of a processing job.

Parameters:

  • job_id (required): Job identifier

list_supported_formats

List all supported input formats and pipelines.

get_queue_statistics

Get current queue and processing statistics.

Integration with Claude Desktop

Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{
  "mcpServers": {
    "document-parser": {
      "command": "python",
      "args": ["-m", "document_parser"],
      "cwd": "/path/to/document-parser-mcp"
    }
  }
}

Restart Claude Desktop and the document parser will be available as a tool.

Pipeline Selection Guide

Standard Pipeline (Default)

  • Best for: Born-digital PDFs, Office documents, clean layouts
  • Features: Advanced layout analysis, table structure recovery, optional OCR
  • Performance: Fast, memory-efficient

VLM Pipeline

  • Best for: Complex layouts, handwritten notes, screenshots, scanned documents
  • Features: Vision-language model processing, end-to-end page understanding
  • Performance: Slower, MLX-accelerated on Apple Silicon

ASR Pipeline

  • Best for: Audio files (meetings, lectures, interviews)
  • Features: Whisper-based transcription
  • Performance: CPU/GPU intensive

Development

Running Tests

# Install development dependencies
pip install -r requirements-dev.txt

# Run tests
pytest

# Run with coverage
pytest --cov=document_parser

Code Quality

# Format code
black document_parser tests

# Lint
ruff check document_parser tests

# Type checking
mypy document_parser

Project Structure

document-parser-mcp/
├── document_parser/         # Main package
│   ├── config/             # Configuration system
│   ├── core/               # Core exceptions and types
│   ├── engine/             # Document processing engine
│   ├── mcp/                # MCP server implementation
│   ├── processing/         # Job queue and tracking
│   └── utils/              # Utility functions
├── tests/                  # Test suite
├── config.yaml            # Default configuration
├── requirements.txt       # Production dependencies
└── setup.py              # Package configuration

Performance Optimization

Memory Management

  • Configure max_memory_gb for your system
  • Set max_concurrent_jobs based on available resources
  • Large files are processed with automatic cleanup

MLX Acceleration (Apple Silicon)

  • Install with pip install docling[mlx]
  • Enable in config: enable_mlx_acceleration: true
  • Automatic fallback to CPU if unavailable

Troubleshooting

Common Issues

"ModuleNotFoundError: No module named 'docling'"

pip install docling

Queue is full errors

  • Wait for current jobs to complete
  • Increase max_concurrent_jobs in config

Memory errors with large files

  • Reduce max_memory_gb in config
  • Use pipeline: standard instead of vlm

OCR not working

pip install easyocr
# Or for tesseract
brew install tesseract  # macOS

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Add tests for new functionality
  5. Run the test suite
  6. Commit your changes (git commit -m 'Add amazing feature')
  7. Push to the branch (git push origin feature/amazing-feature)
  8. Open a Pull Request

License

MIT License - see LICENSE file for details.

Acknowledgments

Support

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选