Documentation Generator MCP Server

Documentation Generator MCP Server

Enables AI assistants to generate professional documentation using structured templates based on the POWER framework. Provides access to standardized templates for README, architecture, API, components, and schema documentation.

Category
访问服务器

README

docs-mcp

Version: 1.0.5 Date: 2025-10-09 Maintainer: willh


Overview

docs-mcp is a Model Context Protocol (MCP) server that provides AI assistants with professional documentation generation capabilities and structured changelog management. It offers 7 specialized tools built on the POWER framework (Purpose, Output, Work, Examples, Requirements) for creating consistent, high-quality project documentation.

What It Does

  • Documentation Generation: Create professional README, ARCHITECTURE, API, COMPONENTS, SCHEMA, and USER-GUIDE documents
  • Changelog Management: Maintain structured, schema-validated changelogs with agent-friendly tooling
  • Agentic Workflows: Enable AI agents to self-document their changes using the update_changelog meta-tool

Key Features

7 MCP Tools - Complete toolkit for documentation and changelog management ✅ POWER Framework - Structured templates ensure comprehensive documentation ✅ Changelog Trilogy - Read, write, and instruct pattern for changelog management ✅ Agentic Self-Documentation - Agents can autonomously document their own changes ✅ Schema Validation - JSON schema ensures changelog data integrity ✅ Multi-Project Support - Generic design works with any project

Security & Quality (v1.0.4-1.0.5)

🔒 SEC-001: Path traversal vulnerability fixed - All paths canonicalized with .resolve() 🔒 SEC-002: JSON schema validation - Automatic validation on all changelog operations 🔒 SEC-003: README routing corrected - README.md correctly saves to project root 📦 DEP-001: Added jsonschema dependency - Enables robust data validation


Prerequisites

Before using docs-mcp, ensure you have:

  • Python 3.10+ - Required for MCP server
  • MCP-compatible AI client - Claude Code CLI, Cursor, Windsurf, or VS Code with MCP support
  • pip package manager - For installing Python dependencies

Verify Requirements

# Check Python version
python --version
# Should show: Python 3.10.x or higher

# Check MCP capability
claude mcp list

Installation

Quick Install (Claude Code)

# Add docs-mcp as a user-scoped MCP server
claude mcp add docs-mcp --scope user python "C:\Users\willh\.mcp-servers\docs-mcp\server.py"

Expected Output:

✓ docs-mcp added successfully

Manual Installation (Other IDEs)

For Cursor: Edit C:\Users\<username>\.cursor\mcp.json:

{
  "mcpServers": {
    "docs-mcp": {
      "command": "python",
      "args": ["C:\\Users\\willh\\.mcp-servers\\docs-mcp\\server.py"]
    }
  }
}

For Windsurf/VS Code: Similar configuration in IDE-specific MCP config file.

Verify Installation

claude mcp list

Expected Output:

docs-mcp: python C:\Users\willh\.mcp-servers\docs-mcp\server.py - ✓ Connected

Available Tools

Documentation Generation Tools (4)

Tool Purpose Required Parameters
list_templates List available POWER templates None
get_template Get template content template_name
generate_foundation_docs Generate all 6 foundation docs project_path
generate_individual_doc Generate single document project_path, template_name

Changelog Management Tools (3)

Tool Purpose Pattern Required Parameters
get_changelog Query changelog history READ project_path
add_changelog_entry Add changelog entry WRITE project_path, version, change_type, severity, title, description, files, reason, impact
update_changelog Agentic workflow guide INSTRUCT project_path, version

Quick Start

Generate Documentation for Your Project

# Ask Claude Code to generate all docs
"Generate foundation documentation for my project at C:\path\to\my-project"

This creates 6 documents:

  • README.mdmy-project/README.md (project root)
  • ARCHITECTURE.mdmy-project/coderef/foundation-docs/
  • API.mdmy-project/coderef/foundation-docs/
  • COMPONENTS.mdmy-project/coderef/foundation-docs/
  • SCHEMA.mdmy-project/coderef/foundation-docs/
  • USER-GUIDE.mdmy-project/coderef/foundation-docs/

Maintain a Changelog

Basic Workflow:

# 1. Make code changes
# 2. Ask agent to document them
"Use update_changelog to document my changes for version 1.0.3"

# Agent will:
# - Analyze changes autonomously
# - Determine change type and severity
# - Call add_changelog_entry with details
# - Update CHANGELOG.json

Manual Entry:

# Add specific changelog entry
add_changelog_entry(
    project_path="C:/path/to/project",
    version="1.0.3",
    change_type="feature",
    severity="major",
    title="Added new feature X",
    description="Implemented X with capabilities Y and Z",
    files=["server.py", "lib/feature.py"],
    reason="Users requested ability to...",
    impact="Users can now...",
    contributors=["your_name"]
)

Usage Examples

Example 1: Generate Project Documentation

# List available templates
list_templates()
# Returns: readme, architecture, api, components, schema, user-guide

# Generate all foundation documents
generate_foundation_docs(project_path="C:/Users/willh/my-project")

# Or generate just one document
generate_individual_doc(
    project_path="C:/Users/willh/my-project",
    template_name="api"
)

Example 2: Query Changelog History

# Get full changelog
get_changelog(project_path="C:/Users/willh/my-project")

# Get specific version
get_changelog(
    project_path="C:/Users/willh/my-project",
    version="1.0.2"
)

# Get all breaking changes
get_changelog(
    project_path="C:/Users/willh/my-project",
    breaking_only=true
)

# Filter by type
get_changelog(
    project_path="C:/Users/willh/my-project",
    change_type="feature"
)

Example 3: Agentic Self-Documentation

# Agent calls update_changelog
update_changelog(
    project_path="C:/Users/willh/my-project",
    version="1.0.3"
)

# Tool returns 3-step instructions:
# STEP 1: Analyze Your Changes
# STEP 2: Determine Change Details
# STEP 3: Call add_changelog_entry

# Agent analyzes context autonomously
# Agent executes add_changelog_entry(...)
# Changelog updated!

Project Structure

docs-mcp/
├── server.py                    # Main MCP server (7 tools)
├── generators/
│   ├── base_generator.py        # Base template generator
│   ├── foundation_generator.py  # Multi-doc generator
│   └── changelog_generator.py   # Changelog CRUD operations
├── templates/
│   └── power/                   # POWER framework templates
│       ├── readme.txt
│       ├── architecture.txt
│       ├── api.txt
│       ├── components.txt
│       ├── schema.txt
│       └── user-guide.txt
├── coderef/
│   ├── changelog/               # Changelog system
│   │   ├── CHANGELOG.json      # Structured changelog data
│   │   └── schema.json         # JSON schema validation
│   ├── foundation-docs/         # Generated documentation
│   └── quickref.md             # Quick reference guide
├── user-guide.md               # Comprehensive user guide
└── MCP-SETUP-GUIDE.md          # MCP server setup guide

Troubleshooting

Issue: "No such tool available: mcp__docs-mcp__*"

Symptom: MCP tools not found after adding server

Cause: MCP server not restarted or not properly registered

Resolution:

# 1. Verify server is registered
claude mcp list

# 2. If not listed, re-add
claude mcp add docs-mcp --scope user python "C:\Users\willh\.mcp-servers\docs-mcp\server.py"

# 3. Restart Claude Code or IDE

Issue: "Invalid project path"

Symptom: Error when calling tools with project_path parameter

Cause: Using relative path instead of absolute path

Resolution:

# ❌ Wrong: Relative path
generate_foundation_docs(project_path="./my-project")

# ✅ Correct: Absolute path
generate_foundation_docs(project_path="C:/Users/willh/my-project")

Issue: "Changelog not found"

Symptom: get_changelog or add_changelog_entry fails

Cause: No changelog exists at project_path/coderef/changelog/CHANGELOG.json

Resolution:

# add_changelog_entry automatically creates changelog structure
# Just call it with your first entry:
add_changelog_entry(
    project_path="C:/path/to/project",
    version="1.0.0",
    change_type="feature",
    severity="major",
    title="Initial release",
    description="Created project with...",
    files=["*"],
    reason="Initial development",
    impact="Project created"
)

Issue: Generated docs are generic

Symptom: Documentation doesn't mention specific project features

Cause: Minimal code in project or AI needs more context

Resolution:

  1. Ensure project has actual implementation code
  2. Add code comments explaining key features
  3. Provide additional context to AI during generation
  4. Manually enhance generated docs if needed

The Changelog Trilogy Pattern

docs-mcp implements a unique meta-tool pattern for changelog management:

┌─────────────────────────────────────────┐
│ get_changelog (READ)                    │
│ Query changelog history                 │
└─────────────────────────────────────────┘
         ↓
┌─────────────────────────────────────────┐
│ add_changelog_entry (WRITE)             │
│ Execute changelog update                │
└─────────────────────────────────────────┘
         ↓
┌─────────────────────────────────────────┐
│ update_changelog (INSTRUCT)             │
│ Orchestrate agentic workflow            │
│ → Agent analyzes context                │
│ → Agent determines details              │
│ → Agent calls add_changelog_entry       │
└─────────────────────────────────────────┘

Why This Matters:

  • Separation of Concerns: Read/write/orchestrate are distinct operations
  • Agentic Design: Agents can self-document without explicit prompting
  • Flexibility: Use WRITE directly or INSTRUCT for autonomous workflows

Additional Resources


Version History

Version Date Changes
1.0.5 2025-10-09 JSON schema validation, README routing fix (SEC-002, SEC-003)
1.0.4 2025-10-09 Path traversal security fix, jsonschema dependency (SEC-001, DEP-001)
1.0.3 2025-10-09 Added update_changelog agentic workflow tool
1.0.2 2025-10-09 Added changelog system (get_changelog, add_changelog_entry)
1.0.1 2025-10-09 Bug fixes and improvements
1.0.0 2025-10-08 Initial release with 4 documentation tools

See CHANGELOG.json for detailed change history.


Contributing

We welcome contributions! When making changes:

  1. Make your changes to the codebase
  2. Test thoroughly to ensure everything works
  3. Document your changes using update_changelog:
    update_changelog(
        project_path="C:/Users/willh/.mcp-servers/docs-mcp",
        version="1.0.x"
    )
    
  4. Commit with clear message describing what changed
  5. Submit pull request with reference to changelog entry

License

[Specify license here - MIT, Apache 2.0, etc.]


AI Integration Footer

This MCP server is optimized for AI assistant integration. It provides:

  • Structured templates that guide documentation generation with consistent quality
  • Decision trees for content selection embedded in templates
  • Command sequences for systematic documentation workflows
  • Agent-friendly tools that enable autonomous self-documentation

For AI Assistants: Use the POWER framework templates to ensure comprehensive documentation. Follow the work section for systematic analysis and the requirements section for mandatory elements. The update_changelog tool demonstrates the meta-tool pattern for orchestrating agent workflows.


🤖 Generated with docs-mcp v1.0.5 Maintained by: willh, Claude Code AI

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选