Documentation Retrieval & Web Scraping
Enables retrieval and cleaning of official documentation content for popular AI/Python libraries (uv, langchain, openai, llama-index) through web scraping and LLM-powered content extraction. Uses Serper API for search and Groq API to clean HTML into readable text with source attribution.
README
MCP Server: Documentation Retrieval & Web Scraping (uv + FastMCP)
This project provides a minimal, async MCP (Model Context Protocol) server that exposes a tool for retrieving and cleaning official documentation content for popular AI / Python ecosystem libraries. It uses:
fastmcpto define and run the MCP server over stdio.httpxfor async HTTP calls.serper.devfor Google-like search (via API).groqAPI (LLM) to clean raw HTML into readable text chunks.python-dotenvfor environment variable management.uvas the package manager & runner (fast, lockfile-based, Python 3.11+).
Features
- Search restricted to official docs domains (
uv,langchain,openai,llama-index). - Tool:
get_docs(query, library)returns concatenated cleaned sections withSOURCE:labels. - Streaming-safe async design (chunking large HTML pages before LLM cleaning).
- Separate
client.pydemonstrating how to connect as an MCP client and call the tool, then post-process with an LLM.
Quick Start
Prerequisites:
- Python 3.11+
uvinstalled (https://docs.astral.sh/uv/)- API keys for:
SERPER_API_KEY,GROQ_API_KEY
1. Clone & Install
git clone <your-repo-url> mcp-server-python
cd mcp-server-python
uv sync
This will create/refresh a .venv based on pyproject.toml + uv.lock.
2. Environment Variables
Create a .env file in the project root:
SERPER_API_KEY=your_serper_api_key_here
GROQ_API_KEY=your_groq_api_key_here
Optional: add other model settings if you later extend functionality.
3. Run the MCP Server Directly
uv run mcp_server.py
The server will start and wait on stdio (no extra output unless you add logging). It registers the tool get_docs.
4. Use the Provided Client
uv run client.py
You should see something like:
Available tools: ['get_docs']
ANSWER: <model-produced answer referencing SOURCE lines>
If the list is empty, ensure the server started correctly and no exceptions were raised (add logging—see below).
Tool: get_docs
Signature:
get_docs(query: str, library: str) -> str
Supported libraries (keys): uv, langchain, openai, llama-index.
Flow:
- Build a site-restricted query:
site:<docs-domain> <query>. - Call Serper API for organic results.
- Fetch each result URL (async) via
httpx. - Split HTML into ~4000‑char chunks (memory safety & LLM limits).
- Clean each chunk using Groq LLM (
openai/gpt-oss-20b) with a system prompt. - Concatenate and label each block with
SOURCE: <url>for traceability.
Returned value: A large text blob suitable for retrieval-augmented prompting, preserving source attribution lines.
Architecture
File overview:
| File | Purpose |
|---|---|
mcp_server.py |
Defines FastMCP instance and implements search_web, fetch_url, and the get_docs tool. |
client.py |
Launches server via stdio, lists tools, calls get_docs, then feeds result to an LLM for a user-friendly answer. |
utils.py |
HTML cleaning helper (currently uses LLM + trafilatura for extraction and Groq for chunk transformation). |
.env |
Environment variables (excluded from VCS). |
pyproject.toml |
Declares dependencies and metadata. |
uv.lock |
Reproducible lockfile generated by uv. |
Dependency Notes
Core runtime deps (from pyproject.toml):
fastmcp– MCP server helper.httpx– async HTTP client.groq– Groq API client.python-dotenv– load variables from.env.trafilatura– heuristic content extraction (currently partially used / can be extended).
Tip: If you add more scraping tools, reuse a single
httpx.AsyncClientfor performance.
Logging & Debugging
To see what the server is doing, you can temporarily add:
import logging, sys
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
Place near the top of mcp_server.py after imports. Since protocol uses stdout for JSON-RPC, send logs to stderr only.
Common issues:
- Empty tool list: The server exited early or crashed—add logging.
SERPER_API_KEYmissing → 401 or empty search results.GROQ_API_KEYmissing → LLM cleaning fails (exception inget_response_from_llm).- Network timeouts: Adjust
timeoutinhttpx.AsyncClientcalls.
Extending
Ideas:
- Add caching layer (e.g.,
sqliteor in-memory dict) to avoid re-fetching same URLs. - Parallelize URL fetch + clean with
asyncio.gather()(mind rate limits / LLM cost). - Add another tool (e.g.,
summarize_diff,list_endpoints). - Provide structured JSON output (list of sources + cleaned text) instead of concatenated string.
- Add tests using
pytest+pytest-asyncio(mock Serper + LLM APIs).
Example Programmatic Use (Without Client Wrapper)
If you want to call the tool directly in a Python script using the client-side MCP library:
from mcp.client.stdio import stdio_client
from mcp import ClientSession, StdioServerParameters
import asyncio
async def demo():
params = StdioServerParameters(command="uv", args=["run", "mcp_server.py"])
async with stdio_client(params) as (r, w):
async with ClientSession(r, w) as session:
await session.initialize()
tools = await session.list_tools()
print([t.name for t in tools.tools])
docs = await session.call_tool("get_docs", {"query": "install", "library": "uv"})
print(docs.content[:500])
asyncio.run(demo())
Running With Active Virtualenv
If you have an already activated virtual environment and want to use that instead of the project’s pinned environment, you can force uv to target it:
uv run --active client.py
Otherwise, uv will warn that your active $VIRTUAL_ENV differs from the project .venv but continue using the project environment.
License
Add a license section here (e.g., MIT) if you intend to distribute.
Troubleshooting Cheat Sheet
| Symptom | Cause | Fix |
|---|---|---|
| No tools listed | Server not running / crashed | Add stderr logging; run uv run mcp_server.py manually |
AttributeError on .text |
Cleaner returned None | Ensure you return actual string from fetch_url / LLM call |
| 401 from Serper | Bad/missing API key | Check .env and reload shell |
| Empty search results | Narrow query | Simplify query or verify domain key |
| High latency | Many sequential LLM chunk calls | Batch or reduce chunk size |
Contributing
- Fork & branch.
- Run
uv sync. - Add tests for new tools (if added).
- Open PR with clear description.
Roadmap (Optional)
- [] Add JSON schema metadata for tool params.
- [] Structured response format (list of {source, text}).
- [] Add caching layer.
- [] Add rate limiting/backoff.
- [] Add CI workflow (lint + tests).
Acknowledgments
- Serper.dev for search API
- Groq for fast OSS model serving
- Astral for
uv - MCP ecosystem for protocol foundation
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。