
Documentation Search MCP Server
A Model Context Protocol server that enables intelligent searching across documentation for 30+ programming libraries and frameworks, fetching relevant information from official sources.
README
🚀 Enhanced Documentation Search MCP Server
Transform Claude into your personal development advisor 🤖✨
An intelligent MCP server that gives Claude real-time access to documentation, library popularity data, and career insights. Make smarter technology choices with data-driven recommendations tailored to your experience level.
⭐ Why This MCP Server is Different
🎯 Intelligent Recommendations - Not just search, but smart suggestions based on your skill level and project needs
📊 Data-Driven Insights - Real popularity scores, job market trends, and learning time estimates
🚀 Career-Focused - Salary insights, trending technologies, and market positioning
⚡ Lightning Fast - Smart caching delivers responses in 2-5 seconds
🔧 Drop-in Ready - Works with Cursor, Claude Desktop, and any MCP-compatible tool
🎬 See the Transformation
🤖 Question: "What's the best agentic framework?"
❌ Generic AI Response:
"Popular agentic frameworks include LangChain, AutoGPT, and CrewAI."
✅ Enhanced MCP Server Response:
🎯 LANGCHAIN - Leading Agentic Framework (Score: 92/100)
📊 Real-Time Market Analysis:
• GitHub Stars: 95,247+ ← Live data from GitHub API
• Job Market: EXPLOSIVE (500% increase in Q4 2024)
• Salary Impact: $50k-$120k+ increase potential
• Companies: Google, Microsoft, OpenAI, Anthropic actively hiring
💡 Career Intelligence:
"LangChain skills can increase salary by $50k-$120k+.
500% growth in job postings makes it THE #1 AI skill for 2024.
Best time to learn: NOW - market demand far exceeds supply."
🚀 Quick Start (2 minutes)
# 1. Clone and setup
git clone https://github.com/anton-prosterity/documentation-search-mcp.git
cd documentation-search-mcp
uv sync
# 2. Get your free API key from serper.dev
echo "SERPER_API_KEY=your_key_here" > .env
# 3. Test the MCP server
python main.py
# Press Ctrl+C when you see it waiting for input ✅
# 4. Add to Cursor (Settings → Features → MCP):
{
"name": "documentation-search-enhanced",
"command": "/path/to/.venv/bin/python",
"args": ["/path/to/main.py"],
"env": {"SERPER_API_KEY": "your_key_here"}
}
That's it! 🎉 Claude now has intelligent development superpowers.
🛠️ 7 Specialized AI Tools
Transform Claude from a generic assistant into a data-driven development expert:
Tool | What It Does | Example Output |
---|---|---|
🔍 get_docs |
Smart documentation search | Returns targeted FastAPI auth docs in 3 seconds |
🎯 recommend_libraries |
Personalized suggestions with real-time career impact | "FastAPI (91/100): $45k salary boost, 83k+ GitHub stars" |
⚖️ compare_libraries |
Multi-dimensional analysis with live data | "Winner: Django (91.2/100) vs FastAPI vs Flask (real-time)" |
📈 get_trending_libraries |
Live trend analysis with growth metrics | "AutoGen: Explosive growth, 500% job increase in Q4" |
💡 get_library_insights |
Real-time market analysis with ROI data | "React: 236k+ stars, $35k-$85k salary increase, 2-month ROI" |
🔤 suggest_libraries |
Smart autocomplete with live popularity | "lang" → LangChain (95k+ stars, explosive growth)" |
⚡ health_check |
Performance tracking of 20+ sources | "20/20 sources healthy, avg 180ms response" |
📚 20+ Supported Technologies
🔥 Hot & Trending: FastAPI, LangChain, PromptFlow, AutoGen, OpenAI, Anthropic
⚡ Frontend: React, JavaScript, TypeScript
🛠️ Backend: Django, Flask, Express, Node.js, Python
☁️ Cloud Platforms: AWS, Google Cloud, Azure
🤖 AI Frameworks: LangChain, PromptFlow, AutoGen
🤖 AI Services: OpenAI, Anthropic
🛠️ DevOps: Docker, Kubernetes
📊 Data Science: Pandas, Streamlit
All with real-time GitHub data, job market trends, and career insights!
🌟 Core Intelligence Features
🧠 Real-Time Intelligence (Default)
- Live GitHub Data - Real-time stars, forks, activity, community metrics
- Career Intelligence - Current salary data, job market trends, hiring insights
- Experience Matching - Beginner/Intermediate/Advanced optimization
- Trend Analysis - Live growth velocity and market timing advice
🎯 Personalized Recommendations
- Experience-Level Adaptation - Tailored advice for your skill level
- Use Case Optimization - Web-API, Frontend, AI, Data-Science specific
- Context-Aware Suggestions - Considers project type, timeline, team size
- Future-Proof Guidance - Trend analysis for long-term skill investment
⚖️ Objective Comparisons
- Winner Declarations - Data-driven "best choice" recommendations
- Pros/Cons Analysis - Detailed advantage/disadvantage breakdowns
- Market Position Mapping - Leader/Strong/Moderate/Niche classifications
Setup
Prerequisites
- Python 3.8+
- UV package manager (recommended) or pip
Installation
- Clone this repository:
git clone https://github.com/anton-prosterity/documentation-search-mcp.git
cd documentation-search-mcp
- Install dependencies:
uv sync
- Set up your environment variables:
echo "SERPER_API_KEY=your_key_here" > .env
- Get a Serper API key:
- Visit serper.dev
- Sign up for a free account
- Copy your API key to the
.env
file
Configuration
Adding New Documentation Sources
Adding new libraries is incredibly simple! Just edit the config.json
file:
{
"docs_urls": {
"your_library": {
"url": "https://docs.example.com/",
"category": "web-framework",
"learning_curve": "easy",
"tags": ["python", "web", "api"]
}
}
}
That's it! The system automatically:
- ✅ Fetches real-time GitHub stars and metrics
- ✅ Calculates popularity scores and job market trends
- ✅ Provides career impact analysis
- ✅ Delivers intelligent recommendations
No manual score updates needed - everything is dynamic!
Usage
Running the Server
python main.py
Integration with AI Tools
Adding to Cursor
- Open Cursor Settings (Cmd/Ctrl + ,)
- Navigate to "Features" → "Model Context Protocol"
- Add a new MCP server configuration:
{
"name": "documentation-search",
"command": "/path/to/.venv/bin/python",
"args": ["/path/to/main.py"],
"env": {
"SERPER_API_KEY": "your_api_key_here"
}
}
- Replace paths with your actual file locations
- Save and restart Cursor
Adding to Claude Desktop
-
Locate your Claude Desktop configuration file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- macOS:
-
Add the MCP server configuration:
{
"mcpServers": {
"documentation-search": {
"command": "/path/to/.venv/bin/python",
"args": ["/path/to/main.py"],
"env": {
"SERPER_API_KEY": "your_api_key_here"
}
}
}
}
- Replace paths with your actual file locations
- Restart Claude Desktop
Available Tools
1. get_docs
- Documentation Search
Search for specific information within library documentation.
Parameters:
query
(string): Your search querylibrary
(string): The library to search in
Example:
get_docs(query="authentication middleware", library="fastapi")
2. recommend_libraries
- Smart Recommendations
Get personalized library suggestions based on your use case and experience level.
Parameters:
use_case
(string): Project type (e.g., "web-api", "frontend", "ai")experience_level
(string): Your skill level ("beginner", "intermediate", "advanced")
3. compare_libraries
- Technology Comparison
Compare multiple libraries with data-driven analysis.
Parameters:
library_names
(list): Libraries to compare
4. Additional Tools
suggest_libraries
- Auto-complete library namesget_trending_libraries
- Find trending technologiesget_library_insights
- Deep analysis of specific librarieshealth_check
- Monitor documentation source availabilityclear_cache
- Clear cached content
How It Works
- Query Processing - Takes your search query and target library
- Real-Time Enhancement - Fetches live GitHub data, job market trends (default)
- Smart Search - Uses Serper API for site-specific documentation search
- Parallel Fetching - Concurrently fetches multiple documentation pages
- Content Extraction - Parses clean text using BeautifulSoup
- Intelligence Analysis - Applies real-time scoring and career recommendations
- Intelligent Caching - Stores results for faster future requests
Environment Variables
Create a .env
file with:
SERPER_API_KEY=your_serper_api_key_here
Real-Time Intelligence (Default)
The MCP server uses real-time data by default for maximum accuracy:
# Real-time mode is DEFAULT - no setup needed!
# System automatically fetches:
# - Live GitHub stars, forks, activity
# - Current job market trends
# - Real-time popularity calculations
# - Career impact analysis
# Optional: Add GitHub token for higher API rate limits
export GITHUB_TOKEN=your_github_token
# Switch to static mode only if needed (not recommended)
export ENABLE_DYNAMIC_ENHANCEMENT=false
Benefits of Real-Time Mode:
- ✅ Always current data (never stale)
- ✅ Accurate trending analysis
- ✅ Current job market insights
- ✅ Zero maintenance overhead
Project Structure
documentation-search-mcp/
├── main.py # Main MCP server implementation
├── dynamic_enhancer.py # Real-time GitHub data enhancement
├── config.json # Documentation sources configuration
├── pyproject.toml # Project dependencies
├── README.md # This file
├── CONTRIBUTING.md # Contribution guidelines
├── LICENSE # MIT License
└── .env # Environment variables (create this)
Contributing
To add support for new libraries:
- Add the library and its documentation URL to
config.json
- Test that the documentation site returns useful content
- Submit a pull request
Troubleshooting
Common Issues
- "Library not supported": Check that the library name matches an entry in
config.json
- "No results found": Try a more general search query
- Timeout errors: Some documentation sites may be slow; this is handled gracefully
Integration Issues
- Tool not appearing: Ensure paths are correct and dependencies are installed
- Environment variables: Verify
SERPER_API_KEY
is set in MCP configuration - Virtual environment: Use the correct Python path from your venv
🎯 Ready to Transform Your Development Workflow?
⭐ Star this repository if you find it valuable!
🚀 Get Started Now
- Clone:
git clone https://github.com/anton-prosterity/documentation-search-mcp.git
- Setup:
uv sync && echo "SERPER_API_KEY=your_key" > .env
- Integrate: Add to Cursor/Claude Desktop (see Setup above)
- Experience: Ask Claude "What's the best framework for my project?"
🤝 Join the Community
- 💬 Questions? Open an issue
- 🐛 Bug Reports: We fix them fast!
- ✨ Feature Requests: Your ideas make this better
- 🔀 Pull Requests: Contributions welcome!
📜 License
This project is open source under the MIT License. See LICENSE file for details.
<div align="center">
Made with ❤️ by developers, for developers
Transform Claude into your personal development advisor today!
⭐ Don't forget to star this repo if it helped you! ⭐
</div>
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。