Dune Query MCP
A bridge that connects Dune Analytics blockchain data to AI applications through Model Control Protocol, allowing LLMs to access on-chain data via natural language interactions.
README
Dune Query MCP
A modern bridge connecting Dune Analytics data to intelligent agents through Model Control Protocol (MCP).
Overview
dune-query-mcp enables seamless integration of blockchain data analytics into your AI applications. By leveraging Dune Analytics' powerful query capabilities with the Model Control Protocol, this service allows LLMs and other AI systems to access on-chain data through simple, natural language interactions.
Core Capabilities
Data Retrieval Tools
| Tool | Description | Use Case |
|---|---|---|
get_latest_result |
Retrieves pre-computed query results | Quick access to existing data |
run_query |
Executes a query on-demand | Real-time data analysis |
Data Format
All data is returned in CSV format, providing:
- Universal compatibility
- Easy parsing by most data analysis tools
- Human-readable output
Getting Started
System Requirements
- Python 3.10 or higher
- Valid Dune Analytics API key (Get yours here)
Quick Setup
-
Clone & Navigate
git clone https://github.com/olaxbt/dune-query-mcp-mcp.git cd dune-query-mcp -
Environment Setup
# Create virtual environment python -m venv .venv # Activate it source .venv/bin/activate # Linux/Mac # or .venv\Scripts\activate # Windows # Install dependencies pip install -r requirements.txt -
Configure API Access
# Copy example config cp .env.example .env # Edit with your API key echo "DUNE_API_KEY=your_key_here" > .env
Usage
Running the Service
dune-query-mcp offers two ways to run:
As MCP Service
python run.py
This starts the MCP service on default port 8000.
As Web Server
python flask_app.py
This provides access to the web interface and REST API endpoints.
Integrating with Applications
MCP Client Integration
from mcp.client import Client
# Connect to Dune-query-mcp
client = Client("http://localhost:8000")
# Get latest results for a query
csv_data = client.call("get_latest_result", query_id=1234567)
# Execute a query
query_results = client.call("run_query", query_id=1234567)
REST API
| Endpoint | Method | Description |
|---|---|---|
/dune/health |
GET | Service health check |
/dune/query/{query_id}/latest |
GET | Retrieve latest results |
/dune/query/{query_id}/execute |
POST | Run a query |
Example REST Call:
curl -X GET http://localhost:5000/dune/query/1234567/latest
Architecture
dune-query-mcp/
├── app/ # Application core
│ ├── __init__.py # Flask & MCP setup
│ ├── routes/ # API endpoint definitions
│ │ └── dune_routes/ # Dune Analytics routes
│ │ └── templates/ # Web interface
│ └── templates/ # Web interface
├── config/ # Configuration files
├── logs/ # Runtime logs
├── flask_app.py # Web server entry point
├── run.py # MCP server entry point
└── requirements.txt # Dependencies
Advanced Configuration
Environment Variables
| Variable | Purpose | Default |
|---|---|---|
| DUNE_API_KEY | Authentication for Dune API | None (Required) |
| PORT | Server port | 8000 |
Performance Tuning
For high-volume query execution:
# Set a higher timeout for long-running queries
export DUNE_QUERY_TIMEOUT=600 # 10 minutes in seconds
Troubleshooting
Common issues and solutions:
| Problem | Solution |
|---|---|
| API Key errors | Ensure .env file exists with valid key |
| Timeout errors | Increase timeout for complex queries |
| CSV parsing issues | Check query returns proper tabular data |
Contributing
Contributions are welcome! Please follow these steps:
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Commit your changes:
git commit -am 'Add some amazing feature' - Push to the branch:
git push origin feature/amazing-feature - Open a Pull Request
License
This project is released under the MIT License. See LICENSE file for details.
Acknowledgments
- Built with FastMCP
- Query functionality powered by Dune Analytics
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。