Dune Query MCP

Dune Query MCP

A bridge that connects Dune Analytics blockchain data to AI applications through Model Control Protocol, allowing LLMs to access on-chain data via natural language interactions.

Category
访问服务器

README

Dune Query MCP

Version Python

A modern bridge connecting Dune Analytics data to intelligent agents through Model Control Protocol (MCP).

Overview

dune-query-mcp enables seamless integration of blockchain data analytics into your AI applications. By leveraging Dune Analytics' powerful query capabilities with the Model Control Protocol, this service allows LLMs and other AI systems to access on-chain data through simple, natural language interactions.

Core Capabilities

Data Retrieval Tools

Tool Description Use Case
get_latest_result Retrieves pre-computed query results Quick access to existing data
run_query Executes a query on-demand Real-time data analysis

Data Format

All data is returned in CSV format, providing:

  • Universal compatibility
  • Easy parsing by most data analysis tools
  • Human-readable output

Getting Started

System Requirements

Quick Setup

  1. Clone & Navigate

    git clone https://github.com/olaxbt/dune-query-mcp-mcp.git
    cd dune-query-mcp
    
  2. Environment Setup

    # Create virtual environment
    python -m venv .venv
    
    # Activate it
    source .venv/bin/activate  # Linux/Mac
    # or
    .venv\Scripts\activate     # Windows
    
    # Install dependencies
    pip install -r requirements.txt
    
  3. Configure API Access

    # Copy example config
    cp .env.example .env
    
    # Edit with your API key
    echo "DUNE_API_KEY=your_key_here" > .env
    

Usage

Running the Service

dune-query-mcp offers two ways to run:

As MCP Service

python run.py

This starts the MCP service on default port 8000.

As Web Server

python flask_app.py

This provides access to the web interface and REST API endpoints.

Integrating with Applications

MCP Client Integration

from mcp.client import Client

# Connect to Dune-query-mcp
client = Client("http://localhost:8000")

# Get latest results for a query
csv_data = client.call("get_latest_result", query_id=1234567)

# Execute a query
query_results = client.call("run_query", query_id=1234567)

REST API

Endpoint Method Description
/dune/health GET Service health check
/dune/query/{query_id}/latest GET Retrieve latest results
/dune/query/{query_id}/execute POST Run a query

Example REST Call:

curl -X GET http://localhost:5000/dune/query/1234567/latest

Architecture

dune-query-mcp/
├── app/                       # Application core
│   ├── __init__.py            # Flask & MCP setup
│   ├── routes/                # API endpoint definitions
│   │   └── dune_routes/       # Dune Analytics routes
│   │   └── templates/             # Web interface
│   └── templates/             # Web interface
├── config/                    # Configuration files
├── logs/                      # Runtime logs
├── flask_app.py               # Web server entry point
├── run.py                     # MCP server entry point
└── requirements.txt           # Dependencies

Advanced Configuration

Environment Variables

Variable Purpose Default
DUNE_API_KEY Authentication for Dune API None (Required)
PORT Server port 8000

Performance Tuning

For high-volume query execution:

# Set a higher timeout for long-running queries
export DUNE_QUERY_TIMEOUT=600  # 10 minutes in seconds

Troubleshooting

Common issues and solutions:

Problem Solution
API Key errors Ensure .env file exists with valid key
Timeout errors Increase timeout for complex queries
CSV parsing issues Check query returns proper tabular data

Contributing

Contributions are welcome! Please follow these steps:

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Commit your changes: git commit -am 'Add some amazing feature'
  4. Push to the branch: git push origin feature/amazing-feature
  5. Open a Pull Request

License

This project is released under the MIT License. See LICENSE file for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选