E-commerce Local MCP Server

E-commerce Local MCP Server

Enables e-commerce shop owners to query their business data using natural language through local AI models. Provides secure, privacy-focused access to sales reports, inventory management, customer analytics, and order data without sending sensitive information to external services.

Category
访问服务器

README

E-commerce Local MCP Server

A local Model Context Protocol (MCP) server that integrates with e-commerce platforms, enabling shop owners to query their business data using natural language through AI models running on local infrastructure.

Overview

This project provides a secure, privacy-focused solution for e-commerce platforms to offer AI-powered data queries without sending sensitive business data to external services. The server leverages multiple local AI models (Llama 3, Mistral, Phi-3) to process natural language queries and retrieve data from e-commerce databases.

Key Features

  • Natural Language Queries: Shop owners can ask questions about their business data in plain English
  • Local AI Processing: All AI inference happens locally for data privacy and cost efficiency
  • Multi-Model Support: Dynamic selection between Llama 3, Mistral, and Phi-3 based on query complexity
  • Secure Data Access: Role-based permissions with secure authentication integration
  • Real-time Responses: Low-latency query processing for seamless user experience
  • Comprehensive Tools: Built-in tools for sales reports, inventory checks, customer analytics, and order management

Target Users

  • E-commerce platform shop owners
  • Platform administrators
  • Customer support teams

Architecture

Core Components

  1. MCP Server Core: Central request processing hub with FastAPI
  2. Model Management System: Dynamic AI model lifecycle management
  3. Tool Registry: Extensible data operation definitions
  4. Data Access Layer: Secure database interface with permission enforcement
  5. Integration Layer: Platform authentication and API gateway

Technology Stack

  • Backend: Python, FastAPI, SQLAlchemy
  • AI Inference: llama.cpp, Ollama, CUDA
  • Database: PostgreSQL
  • Caching: Redis
  • Authentication: JWT integration with existing platform

Performance Targets

  • Simple queries: < 3 seconds response time
  • Complex queries: < 10 seconds response time
  • System uptime: > 99.5%
  • Concurrent users: 10+ without degradation
  • Query accuracy: 90%+ for data retrieval

Development Phases

Phase 1: Foundation Setup (Weeks 1-2)

  • Infrastructure preparation with GPU support
  • MCP server core implementation
  • Security framework establishment

Phase 2: Core Functionality (Weeks 3-5)

  • Model management system
  • Tool registry development
  • Query processing pipeline

Phase 3: Integration & Testing (Weeks 6-7)

  • API integration with chat UI
  • Comprehensive testing suite
  • Performance optimization

Phase 4: Deployment & Documentation (Week 8)

  • Production deployment
  • Documentation and training
  • Operational handover

Security Features

  • Token-based authentication validation
  • Role-based access control
  • Input sanitization and injection prevention
  • Comprehensive audit logging
  • Local data processing (no external API calls)
  • Encrypted data transmission

Quick Start

Prerequisites

  • Python 3.9+
  • CUDA-capable GPU (recommended)
  • PostgreSQL database
  • Redis server
  • Access to e-commerce platform database

Installation

# Clone the repository
git clone <repository-url>
cd test

# Install dependencies
pip install -r requirements.txt

# Configure environment
cp .env.example .env
# Edit .env with your database credentials and API keys

# Initialize database
python scripts/init_db.py

# Download AI models
python scripts/download_models.py

# Start the server
python main.py

Configuration

Edit the .env file with your specific configuration:

DATABASE_URL=postgresql://user:password@localhost/ecommerce_db
REDIS_URL=redis://localhost:6379
PLATFORM_AUTH_URL=https://your-platform.com/auth
GPU_MEMORY_LIMIT=8192
MODEL_CACHE_DIR=./models

Usage Examples

Basic Queries

  • "What were my sales last week?"
  • "Show me low inventory items"
  • "How many orders are pending?"
  • "Which products are my top sellers this month?"

Advanced Analytics

  • "Compare this month's revenue to last month"
  • "Show customer acquisition trends"
  • "Analyze seasonal sales patterns"
  • "Generate inventory turnover report"

API Endpoints

Chat Interface

  • POST /chat/query - Process natural language query
  • GET /chat/history/{session_id} - Retrieve conversation history
  • POST /chat/session - Create new chat session

Model Management

  • GET /models/status - Check model availability
  • POST /models/load/{model_name} - Load specific model
  • DELETE /models/unload/{model_name} - Unload model

Tools

  • GET /tools/list - Available data tools
  • POST /tools/execute - Execute specific tool

Available Tools

  1. Sales Analytics: Revenue reports, trend analysis, period comparisons
  2. Inventory Management: Stock levels, low inventory alerts, reorder suggestions
  3. Customer Insights: Customer analytics, segmentation, behavior patterns
  4. Order Management: Order status, fulfillment tracking, shipping analytics
  5. Product Performance: Best sellers, product analytics, category insights

Monitoring and Maintenance

Health Checks

  • GET /health - System health status
  • GET /metrics - Performance metrics
  • GET /models/health - AI model status

Logging

  • Application logs: logs/app.log
  • Query logs: logs/queries.log
  • Security audit: logs/security.log

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/new-feature)
  3. Commit your changes (git commit -am 'Add new feature')
  4. Push to the branch (git push origin feature/new-feature)
  5. Create a Pull Request

Testing

# Run unit tests
pytest tests/unit/

# Run integration tests
pytest tests/integration/

# Run performance tests
pytest tests/performance/

# Generate coverage report
pytest --cov=src tests/

Deployment

Production Deployment

  1. Set up production environment with GPU support
  2. Configure secure database connections
  3. Set up SSL certificates
  4. Configure monitoring and alerting
  5. Deploy using Docker or direct installation

Docker Deployment

# Build the image
docker build -t ecommerce-mcp-server .

# Run the container
docker run -d \
  --gpus all \
  -p 8000:8000 \
  -v ./data:/app/data \
  -v ./models:/app/models \
  --env-file .env \
  ecommerce-mcp-server

Support

For technical issues and feature requests, please:

  1. Check the documentation
  2. Search existing issues
  3. Create a new issue with detailed description
  4. Contact the development team

License

This project is licensed under the MIT License - see the LICENSE file for details.

Changelog

See CHANGELOG.md for version history and updates.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选