
Edgar MCP Service
Enables deep analysis of SEC EDGAR filings through universal company search, document content extraction, and advanced filing search capabilities. Provides AI-ready access to business descriptions, risk factors, financial statements, and full-text search across any public company's SEC documents.
README
🏛️ Edgar MCP Service
Model Context Protocol (MCP) Server for SEC EDGAR Database
Deep financial document analysis and content extraction service
🚀 Quick Deploy to Railway
One-Click Deployment:
- Fork this repository to your GitHub account
- Connect to Railway: Go to Railway → New Project → Deploy from GitHub repo
- Set environment variable:
SEC_API_USER_AGENT="Your Company/1.0 (your-email@example.com)"
- Get your service URL from Railway dashboard
- Done! Your MCP service is live
🎯 What This Service Provides
🔍 Universal Company Search
- Find ANY public company by name, ticker, or partial match
- Works with Apple, Netflix, small caps, recent IPOs, etc.
- No hardcoded company lists - truly universal
📄 Deep Document Analysis
- Business descriptions from 10-K Item 1
- Risk factors from 10-K Item 1A
- Financial statements with structured data
- Management discussion (MD&A) extraction
- Full-text search within any SEC filing
🔗 Advanced Filing Search
- Date range filtering: "filings between Jan-Mar 2024"
- Form type filtering: 10-K, 10-Q, 8-K, etc.
- Content search: "documents mentioning revenue recognition"
- Direct SEC EDGAR links for all results
📡 API Endpoints
Company Search
GET /search/company?q=Netflix
Response:
{
"found": true,
"cik": "0001065280",
"name": "NETFLIX INC",
"ticker": "NFLX",
"confidence": 1.0
}
Advanced Filing Search
POST /search/filings
{
"company": "Apple",
"form_types": ["10-K", "10-Q"],
"date_from": "2024-01-01",
"content_search": "artificial intelligence",
"limit": 10
}
Content Extraction
POST /extract/business-description
{
"cik": "0000320193",
"form_type": "10-K"
}
🏗️ Architecture
This MCP service is designed to work with AI query engines:
User Query → AI Engine → Edgar MCP → SEC Database
↓
"Netflix's risk factors" → Company Resolution → Deep Content → Structured Response
Integration Example:
// In your AI application
const edgarMCP = 'https://your-service.up.railway.app';
// 1. Resolve company
const company = await fetch(`${edgarMCP}/search/company?q=Netflix`);
// 2. Get content
const riskFactors = await fetch(`${edgarMCP}/extract/risk-factors`, {
method: 'POST',
body: JSON.stringify({ cik: company.cik })
});
// 3. Use in AI analysis
const analysis = await openai.chat.completions.create({
messages: [{ role: 'user', content: `Analyze these risk factors: ${riskFactors}` }]
});
🛠️ Manual Deployment
Prerequisites
- Python 3.11+
- Railway account
- SEC compliance: proper User-Agent string
Local Development
git clone <this-repo>
cd edgar-mcp-service
chmod +x start.sh
./start.sh
Service runs at http://localhost:8001
Deploy to Railway
railway login
railway init
railway variables set SEC_API_USER_AGENT="Your Company/1.0 (email@example.com)"
railway up
📋 Environment Variables
Variable | Required | Description | Example |
---|---|---|---|
SEC_API_USER_AGENT |
✅ | SEC API compliance identifier | "Crowe/EDGAR Query Engine 1.0 (brett.vantil@crowe.com)" |
PORT |
⚪ | Service port (auto-set by Railway) | 8001 |
🔒 SEC Compliance
This service is fully compliant with SEC EDGAR API requirements:
- ✅ Proper User-Agent identification
- ✅ Rate limiting respected
- ✅ Official SEC data sources only
- ✅ No data caching (always fresh)
🧪 Test Your Deployment
# Health check
curl https://your-service.up.railway.app/health
# Find any company
curl "https://your-service.up.railway.app/search/company?q=Tesla"
# Get business description
curl -X POST "https://your-service.up.railway.app/extract/business-description" \
-H "Content-Type: application/json" \
-d '{"cik": "0001318605", "form_type": "10-K"}'
📞 Support
This MCP service enables powerful financial analysis applications by providing:
- 🎯 Universal access to any SEC-registered company
- 📊 Deep content extraction beyond basic metadata
- 🔍 Advanced search capabilities across all filings
- 🤖 AI-ready responses for natural language processing
Perfect for building financial analysis tools, compliance monitoring, and investment research platforms.
Powered by EdgarTools 📈
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。