EdgeLake MCP Server
Enables AI assistants to query and explore distributed data across EdgeLake nodes through SQL operations, resource discovery, and schema inspection. Supports complex queries with joins, aggregations, and metadata fields across multiple databases and tables.
README
EdgeLake MCP Server
A Model Context Protocol (MCP) server for EdgeLake distributed database, providing AI assistants with access to query and explore distributed data across EdgeLake nodes.
Features
- Resource Discovery: List all databases and tables available on EdgeLake nodes
- Schema Inspection: Retrieve table schemas with column information
- SQL Query Execution: Execute complex SQL queries with:
- WHERE clauses with AND/OR operators
- GROUP BY aggregations
- ORDER BY with ASC/DESC sorting
- JOINs across tables and databases
- Extended metadata fields (+ip, +hostname, @table_name, etc.)
- LIMIT for result pagination
- Multi-threaded Execution: Concurrent request handling for optimal performance
- Stateless Design: No session management required
Architecture
┌────────────────────┐ ┌─────────────────────────┐ ┌────────────────────┐
│ │ │ EdgeLake MCP Server │ │ │
│ MCP Client │◀───────▶│ │◀───────▶│ EdgeLake Node │
│ (Claude, etc.) │ stdio │ - Resources (list) │ HTTP │ (REST API) │
│ │ │ - Resources (read) │ │ │
└────────────────────┘ │ - Tools (query) │ └────────────────────┘
│ - Tools (node_status) │
└─────────────────────────┘
Installation
Prerequisites
- Python 3.10 or higher
- Access to an EdgeLake node with REST API enabled
- EdgeLake node running on accessible IP:port (default: localhost:32049)
Install Dependencies
pip install -r requirements.txt
Configuration
Configure the server using environment variables:
TODO: Update so that node information can be provided dynamically
| Variable | Description | Default |
|---|---|---|
EDGELAKE_HOST |
EdgeLake node IP/hostname | 127.0.0.1 |
EDGELAKE_PORT |
EdgeLake REST API port | 32049 |
EDGELAKE_TIMEOUT |
HTTP request timeout (seconds) | 20 |
EDGELAKE_MAX_WORKERS |
Max concurrent threads | 10 |
LOG_LEVEL |
Logging level (DEBUG, INFO, WARNING, ERROR) | INFO |
Example Configuration
Create a .env file:
EDGELAKE_HOST=192.168.1.106
EDGELAKE_PORT=32049
EDGELAKE_TIMEOUT=30
EDGELAKE_MAX_WORKERS=20
LOG_LEVEL=INFO
Or export environment variables:
export EDGELAKE_HOST=192.168.1.106
export EDGELAKE_PORT=32049
Usage
Running the Server
The MCP server runs as a subprocess using stdio transport:
python server.py
MCP Client Configuration
Add to your MCP client configuration (e.g., Claude Desktop):
macOS/Linux: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"edgelake": {
"command": "python",
"args": ["/path/to/edgelake/mcp-server/server.py"],
"env": {
"EDGELAKE_HOST": "192.168.1.106",
"EDGELAKE_PORT": "32049"
}
}
}
}
MCP Protocol Implementation
Resources
resources/list
Lists all available databases and tables.
Response Format:
database://{database_name} - Database resource
database://{database_name}/{table_name} - Table resource
Example:
[
{
"uri": "database://my_database",
"name": "Database: my_database",
"description": "All tables in database 'my_database'",
"mimeType": "application/json"
},
{
"uri": "database://my_database/users",
"name": "my_database.users",
"description": "Table 'users' in database 'my_database'",
"mimeType": "application/json"
}
]
resources/read
Reads a specific resource (table schema).
URI Format: database://{database}/{table}
Example Request:
{
"method": "resources/read",
"params": {
"uri": "database://my_database/users"
}
}
Example Response:
{
"contents": [
{
"uri": "database://my_database/users",
"mimeType": "application/json",
"text": "{\n \"columns\": [\n {\"name\": \"id\", \"type\": \"INTEGER\"},\n {\"name\": \"name\", \"type\": \"VARCHAR\"},\n {\"name\": \"email\", \"type\": \"VARCHAR\"}\n ]\n}"
}
]
}
Tools
query
Execute SQL queries against EdgeLake with advanced filtering and aggregation.
Parameters:
| Parameter | Type | Required | Description |
|---|---|---|---|
database |
string | Yes | Database name |
table |
string | Yes | Table name |
select |
array[string] | No | Columns to select (default: ["*"]) |
where |
string | No | WHERE clause conditions |
group_by |
array[string] | No | Columns to group by |
order_by |
array[object] | No | Sort specifications |
include_tables |
array[string] | No | Additional tables to JOIN |
extend_fields |
array[string] | No | Metadata fields to add |
limit |
integer | No | Max rows to return (default: 100) |
format |
string | No | Output format: json or table (default: json) |
Example - Simple Query:
{
"name": "query",
"arguments": {
"database": "iot_data",
"table": "sensor_readings",
"where": "temperature > 25",
"limit": 10
}
}
Example - Complex Aggregation:
{
"name": "query",
"arguments": {
"database": "iot_data",
"table": "sensor_readings",
"select": ["device_id", "AVG(temperature) as avg_temp", "COUNT(*) as count"],
"where": "timestamp > '2025-01-01'",
"group_by": ["device_id"],
"order_by": [
{"column": "avg_temp", "direction": "DESC"}
],
"limit": 20
}
}
Example - Cross-Database Join:
{
"name": "query",
"arguments": {
"database": "sales",
"table": "orders",
"include_tables": ["inventory.products", "customers"],
"where": "orders.status = 'completed'",
"limit": 50
}
}
Example - Extended Fields:
{
"name": "query",
"arguments": {
"database": "iot_data",
"table": "events",
"extend_fields": ["+ip", "+hostname", "@table_name"],
"limit": 100
}
}
node_status
Get EdgeLake node status and health information.
Example:
{
"name": "node_status",
"arguments": {}
}
list_databases
List all available databases in EdgeLake. Use this to discover what databases are available before querying.
Example:
{
"name": "list_databases",
"arguments": {}
}
Response:
{
"databases": ["new_company", "iot_data", "sales"],
"count": 3
}
list_tables
List all tables in a specific database. Use this to discover what tables are available in a database before querying.
Parameters:
| Parameter | Type | Required | Description |
|---|---|---|---|
database |
string | Yes | Database name to list tables from |
Example:
{
"name": "list_tables",
"arguments": {
"database": "new_company"
}
}
Response:
{
"database": "new_company",
"tables": ["rand_data", "ping_sensor", "events"],
"count": 3
}
get_schema
Get the schema (column definitions) for a specific table. Use this to understand what columns are available before querying.
Parameters:
| Parameter | Type | Required | Description |
|---|---|---|---|
database |
string | Yes | Database name |
table |
string | Yes | Table name |
Example:
{
"name": "get_schema",
"arguments": {
"database": "new_company",
"table": "rand_data"
}
}
Response:
{
"columns": [
{"name": "row_id", "type": "SERIAL"},
{"name": "insert_timestamp", "type": "TIMESTAMP"},
{"name": "tsd_name", "type": "CHAR(3)"},
{"name": "tsd_id", "type": "INT"},
{"name": "timestamp", "type": "timestamp"},
{"name": "value", "type": "decimal"}
]
}
server_info
Get EdgeLake MCP Server version and configuration information.
Example:
{
"name": "server_info",
"arguments": {}
}
Response:
{
"version": "1.0.6",
"server_name": "edgelake-mcp-server",
"configuration": {
"edgelake_host": "192.168.1.106",
"edgelake_port": 32349,
"request_timeout": 20,
"max_workers": 10,
"log_level": "INFO"
}
}
Query Building Rules
WHERE Clause
Add filtering conditions with AND/OR operators:
WHERE is_active = true AND age > 18
WHERE status = 'active' OR status = 'pending'
WHERE (category = 'A' OR category = 'B') AND price > 100
GROUP BY
Group results by columns (required when using aggregations with non-aggregated columns):
SELECT device_id, AVG(temperature) FROM sensors GROUP BY device_id
ORDER BY
Order results by columns with optional direction:
ORDER BY created_at DESC
ORDER BY category ASC, price DESC
Include Tables (JOINs)
Include additional tables using comma-separated syntax. For cross-database tables, use db_name.table_name:
FROM orders, customers, inventory.products
Extended Fields
Add EdgeLake metadata fields using special prefixes:
+ip- Node IP address+overlay_ip- Overlay network IP+hostname- Node hostname@table_name- Source table name
SELECT +ip, +hostname, @table_name, * FROM events
LIMIT
Limit the number of rows returned:
SELECT * FROM users LIMIT 100
API Examples
Using curl (for testing)
# List resources
echo '{"jsonrpc":"2.0","id":1,"method":"resources/list","params":{}}' | python server.py
# Read table schema
echo '{"jsonrpc":"2.0","id":2,"method":"resources/read","params":{"uri":"database://mydb/users"}}' | python server.py
# Execute query
echo '{"jsonrpc":"2.0","id":3,"method":"tools/call","params":{"name":"query","arguments":{"database":"mydb","table":"users","where":"is_active = true","limit":10}}}' | python server.py
# Get node status
echo '{"jsonrpc":"2.0","id":4,"method":"tools/call","params":{"name":"node_status","arguments":{}}}' | python server.py
EdgeLake Commands Reference
The MCP server uses EdgeLake's REST API with these commands:
| MCP Operation | EdgeLake Command |
|---|---|
| List databases | GET / with header command: get databases |
| List tables | GET / with header command: get tables where dbms = {database} |
| Get schema | GET / with header command: get columns where dbms = {database} and table = {table} |
| Execute query | GET / with header command: sql {database} format = {format} "{query}" |
| Node status | GET / with header command: get status |
Logging
Logs are written to:
- File:
edgelake_mcp.log(in server directory) - stderr: Console output for debugging
Set log level via LOG_LEVEL environment variable (DEBUG, INFO, WARNING, ERROR).
Development
Project Structure
mcp-server/
├── server.py # Main MCP server implementation
├── edgelake_client.py # Multi-threaded EdgeLake HTTP client
├── query_builder.py # SQL query construction
├── config.py # Configuration management
├── requirements.txt # Python dependencies
├── README.md # This file
└── Design/ # Design documentation
├── mcp_service.md
└── top-level-diagram.monojson
Running Tests
pytest
Code Style
# Format code
black *.py
# Type checking
mypy *.py
Troubleshooting
Connection Issues
Problem: Cannot connect to EdgeLake node
Error: Request error: Connection refused
Solution:
- Verify EdgeLake node is running:
curl http://{host}:{port} - Check firewall settings
- Verify
EDGELAKE_HOSTandEDGELAKE_PORTare correct
Empty Database List
Problem: No databases returned from resources/list
Solution:
- Check EdgeLake node has databases:
curl -H "command: get databases" http://{host}:{port} - Verify user has permissions to view databases
- Check EdgeLake logs for errors
Query Timeout
Problem: Query takes too long and times out
Solution:
- Increase
EDGELAKE_TIMEOUTenvironment variable - Add more specific WHERE clauses to reduce result set
- Use LIMIT to restrict rows returned
License
Mozilla Public License 2.0
Support
For issues and questions:
- EdgeLake Documentation: https://edgelake.github.io
- EdgeLake GitHub: https://github.com/EdgeLake
- MCP Specification: https://modelcontextprotocol.io
Contributing
Contributions are welcome! Please ensure:
- Code follows PEP 8 style guide
- All tests pass
- New features include documentation
- Type hints are used throughout
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。