Educhain MCP Server
An MCP server that utilizes Google Gemini and the educhain library to generate educational content such as MCQs, flashcards, and lesson plans. It provides specialized tools and resources for building structured learning materials directly within MCP-compatible clients like Claude Desktop.
README
Educhain based MCP Server (via Google Gemini)
This project devises an MCP server that handles various functions like: generating MCQs, flashcards, lesson-plans etc.,
Structure
Claude Desktop(Front end) <-> MCP Server <-> LLM (google Gemini)
Installation and Initialization
Recommended Python version: 3.10
Packages Manager: uv (Recommended) or pip
Step 0: Clone this repository
git clone Anudeep-CodeSpace/educhain_mcp_server.git
cd educhain_mcp_server
Step 1: Install uv
pip install uv # universal
brew install uv # mac os only
Step 2: Initialize project
uv init # initialize an already existing project
Step 3: Add required packages
# They contain all the required sub -packages in them
uv add "educhain" "mcp[cli]"
Step 4: Add your Google gemini api key
# inside .env file
GOOGLE_API_KEY=<Your Google api key without quotes>
Step 5: Debug your MCP server
uv run mcp dev main.py
It produces a tokenised proxy server at
http://localhost:6274/?PROXY_API_TOKEN=<proxy token>
Paste it and navigate to the link in a browser. Click "Connect" and you can debug your tools, resources and prompts in that site.
Step 6: Install Claude Desktop app
Install Claude Desktop app and login with your account(can be new).
Step 7: Add MCP server to Claude Desktop app
In the git repo folder run
# Adds the MCP Server to Claude Desktop client
uv run mcp install main.py
After that your claude_desktop_config.json should look like this:
{
"mcpServers": {
"Educhain - MCP server": {
"command": "absolute/path/to/uv",
"args": [
"run",
"--with",
"mcp[cli]",
"mcp",
"run",
"absolute/path/to/main/main.py"
]
}
}
}
Final step: Check for any discrepancies in the logs
All the logs are located at:
%APPDATA%\\Claude\\logs\\mcp.log # in windows
~/Library/Logs/Claude/mcp.log # in macOS
Metadata
get_info(about://info) resource lists out all the tools and resources provided by this server
Key Characteristics of this project
Modularity: Separating the server initialization (server.py), route handling (handlers.py), and the main entry point (main.py) makes the codebase clean, scalable, and easy to maintain.
Clear Schema Definitions: Use of Pydantic models in the schema directory. It ensures strong data validation, clear API contracts, and self-documenting code for requests and responses.
Dependency Injection: Passing the mcp server instance to handler functions (handle_resources(mcp)) is a good practice. It avoids circular dependencies and global state issues.
Use of Decorators: The @mcp.resource and @mcp.tool decorators provide a clean and declarative way to define the server's capabilities.
Known Issues
Claude Desktop client cannot direclty access Resource Templates (Beta stage)
For Example Claude Desktop client cannot access the generate_lessonplan resource(uri = lessonplan://{topic}) cannot be used directly as it is in beta stage and doesn't support dynamic resource uri's!!!
So Generate a lesson plan to teach algebra cannot invoke the generate_lessonplan tools!
Needs external LLM to generate content
Claude being a powerful llm cannot direclty generate content according to our tools and resources! (Hence I am using Gemini)
Key Contributors
Myself(Anudeep-CodeSpace), Chatgpt, Perplexity AI, Gemini(Free LLM)
Note
Node js(LTS) version is required for debugging pyenv is not recommended(That wasted a lot of time for me 😭)
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。