Educhain MCP Server

Educhain MCP Server

An MCP server that utilizes Google Gemini and the educhain library to generate educational content such as MCQs, flashcards, and lesson plans. It provides specialized tools and resources for building structured learning materials directly within MCP-compatible clients like Claude Desktop.

Category
访问服务器

README

Educhain based MCP Server (via Google Gemini)

This project devises an MCP server that handles various functions like: generating MCQs, flashcards, lesson-plans etc.,

Structure

Claude Desktop(Front end) <-> MCP Server <-> LLM (google Gemini)

Installation and Initialization

Recommended Python version: 3.10

Packages Manager: uv (Recommended) or pip

Step 0: Clone this repository

git clone Anudeep-CodeSpace/educhain_mcp_server.git
cd educhain_mcp_server

Step 1: Install uv

pip install uv # universal
brew install uv # mac os only

Step 2: Initialize project

uv init # initialize an already existing project

Step 3: Add required packages

# They contain all the required sub -packages in them
uv add "educhain" "mcp[cli]"

Step 4: Add your Google gemini api key

# inside .env file
GOOGLE_API_KEY=<Your Google api key without quotes>

Step 5: Debug your MCP server

uv run mcp dev main.py

It produces a tokenised proxy server at

http://localhost:6274/?PROXY_API_TOKEN=<proxy token>

Paste it and navigate to the link in a browser. Click "Connect" and you can debug your tools, resources and prompts in that site.

Step 6: Install Claude Desktop app

Install Claude Desktop app and login with your account(can be new).

Step 7: Add MCP server to Claude Desktop app

In the git repo folder run

# Adds the MCP Server to Claude Desktop client
uv run mcp install main.py

After that your claude_desktop_config.json should look like this:

{
  "mcpServers": {
    "Educhain - MCP server": {
      "command": "absolute/path/to/uv",
      "args": [
        "run",
        "--with",
        "mcp[cli]",
        "mcp",
        "run",
        "absolute/path/to/main/main.py"
      ]
    }
  }
}

Final step: Check for any discrepancies in the logs

All the logs are located at:

%APPDATA%\\Claude\\logs\\mcp.log # in windows
~/Library/Logs/Claude/mcp.log # in macOS

Metadata

get_info(about://info) resource lists out all the tools and resources provided by this server

Key Characteristics of this project

Modularity: Separating the server initialization (server.py), route handling (handlers.py), and the main entry point (main.py) makes the codebase clean, scalable, and easy to maintain.

Clear Schema Definitions: Use of Pydantic models in the schema directory. It ensures strong data validation, clear API contracts, and self-documenting code for requests and responses.

Dependency Injection: Passing the mcp server instance to handler functions (handle_resources(mcp)) is a good practice. It avoids circular dependencies and global state issues.

Use of Decorators: The @mcp.resource and @mcp.tool decorators provide a clean and declarative way to define the server's capabilities.

Known Issues

Claude Desktop client cannot direclty access Resource Templates (Beta stage)

For Example Claude Desktop client cannot access the generate_lessonplan resource(uri = lessonplan://{topic}) cannot be used directly as it is in beta stage and doesn't support dynamic resource uri's!!!

So Generate a lesson plan to teach algebra cannot invoke the generate_lessonplan tools!

Needs external LLM to generate content

Claude being a powerful llm cannot direclty generate content according to our tools and resources! (Hence I am using Gemini)

Key Contributors

Myself(Anudeep-CodeSpace), Chatgpt, Perplexity AI, Gemini(Free LLM)

Note

Node js(LTS) version is required for debugging pyenv is not recommended(That wasted a lot of time for me 😭)

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选