eFax to JSON MCP Server

eFax to JSON MCP Server

Converts eFax documents (PDF, TIFF, CCD XML) from OpenText Fax Server Software into structured JSON format with OCR support, metadata extraction, and batch processing capabilities.

Category
访问服务器

README

eFax to JSON MCP Server

A Model Context Protocol (MCP) server that converts eFax documents from OpenText Fax Server Software into structured JSON format. Supports PDF, TIFF, and CCD XML document formats with advanced OCR and metadata extraction capabilities.

Features

Supported Formats

  • PDF Documents - Text extraction and OCR for scanned PDFs
  • TIFF Images - Multi-page TIFF support with OCR processing
  • CCD XML - Clinical Document Architecture parsing

Processing Capabilities

  • Intelligent OCR - Tesseract-based text recognition with confidence scoring
  • Metadata Extraction - Preserve document properties and fax information
  • Batch Processing - Convert multiple documents simultaneously
  • Format Validation - Comprehensive document structure validation
  • Error Recovery - Robust error handling with detailed reporting

Installation

Prerequisites

  • Node.js 18+
  • System-level Tesseract OCR installation:
    • Ubuntu/Debian: sudo apt-get install tesseract-ocr
    • macOS: brew install tesseract
    • Windows: Download from UB Mannheim releases

Setup Steps

  1. Create project directory

    mkdir efax-mcp-server
    cd efax-mcp-server
    
  2. Initialize and install dependencies

    npm init -y
    npm install @modelcontextprotocol/sdk pdf-parse sharp tesseract.js xml2js
    npm install -D @types/node @types/pdf-parse @types/xml2js typescript ts-node
    
  3. Create directory structure

    mkdir -p src/{types,processors,utils}
    mkdir -p tests/test-files
    mkdir -p docs
    
  4. Add source files (paste the provided code into respective files)

  5. Build the project

    npm run build
    

Usage

MCP Client Configuration

Add to your MCP client configuration (e.g., Claude Desktop):

{
  "mcpServers": {
    "efax-converter": {
      "command": "node",
      "args": ["/path/to/efax-mcp-server/dist/server.js"]
    }
  }
}

Available Tools

1. Convert Single Document

convert_efax_document --filePath "/path/to/document.pdf" --performOCR true

Parameters:

  • filePath (required) - Path to eFax document
  • outputPath (optional) - Custom output JSON path
  • extractMetadata (default: true) - Extract document metadata
  • performOCR (default: true) - Enable OCR processing
  • ocrLanguage (default: "eng") - OCR language code
  • includeRawData (default: false) - Include raw document data

2. Batch Convert Documents

batch_convert_efax --inputDirectory "/path/to/docs" --outputDirectory "/path/to/json"

Parameters:

  • inputDirectory (required) - Source document directory
  • outputDirectory (required) - JSON output directory
  • filePattern (default: "*") - File matching pattern
  • continueOnError (default: true) - Continue on individual failures

3. Validate JSON Output

validate_efax_json --jsonPath "/path/to/output.json"

4. Get File Information

get_file_info --filePath "/path/to/document.pdf"

5. List Supported Formats

list_supported_formats

JSON Output Structure

{
  "id": "efax_document_1234567890_abc123",
  "source": "efax",
  "format": "pdf|tiff|ccd_xml",
  "timestamp": "2025-08-04T12:00:00.000Z",
  "metadata": {
    "originalFileName": "fax_document.pdf",
    "fileSize": 2048576,
    "pages": 3,
    "sender": "John Doe",
    "recipient": "Jane Smith",
    "faxNumber": "+1-555-123-4567",
    "resolution": "1200x1800",
    "ocrConfidence": 95.5,
    "processingTime": 3500
  },
  "content": {
    "text": "Full extracted text content...",
    "pages": [
      {
        "pageNumber": 1,
        "text": "Page 1 text content...",
        "confidence": 96.2,
        "metadata": {
          "width": 1200,
          "height": 1800,
          "resolution": "1200x1800"
        }
      }
    ],
    "sections": [
      {
        "title": "Patient Information",
        "content": "Patient details...",
        "type": "patient",
        "pageNumbers": [1]
      }
    ]
  },
  "rawData": {
    "pdfInfo": {},
    "imageMetadata": {}
  }
}

Architecture

Modular Design

  • Processors: Format-specific conversion logic
  • Utilities: Shared validation and file handling
  • Types: Comprehensive TypeScript definitions

Processing Pipeline

  1. File Validation - Format and size checks
  2. Format Detection - Automatic type identification
  3. Content Extraction - Text and metadata processing
  4. OCR Processing - Image-to-text conversion when needed
  5. Structure Validation - Output quality assurance
  6. JSON Serialization - Standardized output format

Development

Build Commands

npm run build     # Compile TypeScript
npm run dev       # Development mode with hot reload
npm run test      # Run test suite
npm run clean     # Clean build directory

Testing

Place sample documents in tests/test-files/ and run:

npm test

Adding New Formats

  1. Create processor in src/processors/
  2. Add type definitions in src/types/
  3. Register in main server
  4. Update documentation

Performance Considerations

  • OCR Processing: CPU-intensive, consider batch size limits
  • Memory Usage: Large TIFF files may require significant RAM
  • Processing Time: Varies by document complexity and OCR requirements
  • Concurrent Processing: Single-threaded OCR worker per instance

Error Handling

The server provides comprehensive error handling:

  • File Validation Errors - Invalid paths, unsupported formats
  • Processing Errors - OCR failures, corrupted documents
  • System Errors - Memory issues, disk space problems
  • Validation Errors - Output structure problems

Troubleshooting

Common Issues

OCR Not Working

  • Verify Tesseract installation: tesseract --version
  • Check language pack availability
  • Ensure sufficient system memory

Large File Processing

  • Monitor memory usage during conversion
  • Consider breaking large batches into smaller chunks
  • Verify available disk space for output

Permission Errors

  • Check read permissions on input files
  • Verify write permissions on output directory
  • Ensure MCP server has appropriate file system access

License

MIT License - see LICENSE file for details.

Support

For issues and feature requests, please use the project's issue tracker.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选