Elrond MCP

Elrond MCP

Enables enhanced decision-making through hierarchical LLM analysis, using three specialized critique agents (positive, neutral, negative) that analyze proposals in parallel and synthesize them into comprehensive, actionable insights. Helps overcome single-model biases by providing multi-perspective evaluation of complex ideas and proposals.

Category
访问服务器

README

Elrond MCP - Thinking Augmentation Server

A Model Context Protocol (MCP) server that provides hierarchical LLM critique and synthesis for enhanced decision-making and idea evaluation.

[!WARNING] Preview Software: This is experimental software in active development and is not intended for production use. Features may change, break, or be removed without notice. Use at your own risk.

Overview

Elrond MCP implements a multi-agent thinking augmentation system that analyzes proposals through three specialized critique perspectives (positive, neutral, negative) and synthesizes them into comprehensive, actionable insights. This approach helps overcome single-model biases and provides more thorough analysis of complex ideas.

Features

  • Parallel Critique Analysis: Three specialized agents analyze proposals simultaneously from different perspectives
  • Structured Responses: Uses Pydantic models and instructor library for reliable, structured outputs
  • Google AI Integration: Leverages Gemini 2.5 Flash for critiques and Gemini 2.5 Pro for synthesis
  • MCP Compliance: Full Model Context Protocol support for seamless integration with AI assistants
  • Comprehensive Analysis: Covers feasibility, risks, benefits, implementation, stakeholder impact, and resource requirements
  • Consensus Building: Identifies areas of agreement and disagreement across perspectives

Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   Positive      │    │    Neutral      │    │   Negative      │
│   Critique      │    │   Critique      │    │   Critique      │
│   Agent         │    │    Agent        │    │    Agent        │
│                 │    │                 │    │                 │
│ Gemini 2.5      │    │ Gemini 2.5      │    │ Gemini 2.5      │
│ Flash           │    │ Flash           │    │ Flash           │
└─────────┬───────┘    └─────────┬───────┘    └─────────┬───────┘
          │                      │                      │
          │                      │                      │
          └──────────────────────┼──────────────────────┘
                                 │
                                 ▼
                    ┌─────────────────────────┐
                    │    Synthesis Agent      │
                    │                         │
                    │  Gemini 2.5 Pro         │
                    │                         │
                    │                         │
                    │  Consensus + Summary    │
                    └─────────────────────────┘

Installation

Prerequisites

Setup

  1. Clone the repository:

    git clone <repository-url>
    cd elrond-mcp
    
  2. Install dependencies:

    # Using uv (recommended)
    uv sync --dev --all-extras
    
    # Or using pip
    pip install -e .[dev]
    
  3. Configure API key:

    export GEMINI_API_KEY="your-gemini-api-key-here"
    
    # Or create a .env file
    echo "GEMINI_API_KEY=your-gemini-api-key-here" > .env
    

Usage

Running the Server

Development Mode

# Using uv
uv run python main.py

# Using MCP CLI (if installed)
mcp dev elrond_mcp/server.py

Production Mode

# Direct execution
python main.py

# Or via package entry point
elrond-mcp

Integration with Claude Desktop

  1. Install for Claude Desktop:

    mcp install elrond_mcp/server.py --name "Elrond Thinking Augmentation"
    
  2. Manual Configuration: Add to your Claude Desktop MCP settings:

    {
      "elrond-mcp": {
        "command": "python",
        "args": ["/path/to/elrond-mcp/main.py"],
        "env": {
          "GEMINI_API_KEY": "your-api-key-here"
        }
      }
    }
    

Using the Tools

Augment Thinking Tool

Analyze any proposal through multi-perspective critique:

Use the "consult_the_council" tool with this proposal:

# Project Alpha: AI-Powered Customer Service

## Overview
Implement an AI chatbot to handle 80% of customer service inquiries, reducing response time from 2 hours to 30 seconds.

## Goals
- Reduce operational costs by 40%
- Improve customer satisfaction scores
- Free up human agents for complex issues

## Implementation
- Deploy GPT-4 based chatbot
- Integrate with existing CRM
- 3-month rollout plan
- $200K initial investment

Check System Status Tool

Monitor the health and configuration of the thinking augmentation system:

Use the "check_system_status" tool to verify:
- API key configuration
- Model availability
- System health

Response Structure

Critique Response

Each critique agent provides:

  • Executive Summary: Brief overview of the perspective
  • Structured Analysis:
    • Feasibility assessment
    • Risk identification
    • Benefit analysis
    • Implementation considerations
    • Stakeholder impact
    • Resource requirements
  • Key Insights: 3-5 critical observations
  • Confidence Level: Numerical confidence (0.0-1.0)

Synthesis Response

The synthesis agent provides:

  • Executive Summary: High-level recommendation
  • Consensus View:
    • Areas of agreement
    • Areas of disagreement
    • Balanced assessment
    • Critical considerations
  • Recommendation: Overall guidance
  • Next Steps: Concrete action items
  • Uncertainty Flags: Areas needing more information
  • Overall Confidence: Synthesis confidence level

Development

Project Structure

elrond-mcp/
├── elrond_mcp/
│   ├── __init__.py
│   ├── server.py          # MCP server implementation
│   ├── agents.py          # Critique and synthesis agents
│   ├── client.py          # Centralized Google AI client management
│   └── models.py          # Pydantic data models
├── scripts/               # Development scripts
│   └── check.sh          # Quality check script
├── tests/                 # Test suite
├── main.py               # Entry point
├── pyproject.toml        # Project configuration
└── README.md

Running Tests

# Using uv
uv run pytest

# Using pip
pytest

Code Formatting

# Format and lint code
uv run ruff format .
uv run ruff check --fix .

# Type checking
uv run mypy elrond_mcp/

Development Script

For convenience, use the provided script to run all quality checks:

# Run all quality checks (lint, format, test)
./scripts/check.sh

This script will:

  • Sync dependencies
  • Run Ruff linter with auto-fix
  • Format code with Ruff
  • Execute the full test suite
  • Perform final lint check
  • Provide a pre-commit checklist

Configuration

Environment Variables

  • GEMINI_API_KEY: Required Google AI API key
  • LOG_LEVEL: Logging level (default: INFO)

Model Configuration

  • Critique Agents: gemini-2.5-flash
  • Synthesis Agent: gemini-2.5-pro

Models can be customized by modifying the agent initialization in agents.py.

Troubleshooting

Common Issues

  1. API Key Not Found

    Error: Google AI API key is required
    

    Solution: Set the GEMINI_API_KEY environment variable

  2. Empty Proposal Error

    Error: Proposal cannot be empty
    

    Solution: Ensure your proposal is at least 10 characters long

  3. Model Rate Limits

    Error: Rate limit exceeded
    

    Solution: Wait a moment and retry, or check your Google AI quota

  4. Validation Errors

    ValidationError: ...
    

    Solution: The LLM response didn't match expected structure. This is usually temporary - retry the request

Debugging

Enable debug logging:

export LOG_LEVEL=DEBUG
export GEMINI_API_KEY=your-api-key-here
python main.py

Check system status:

# Use the check_system_status tool to verify configuration

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Run the test suite
  6. Submit a pull request

License

See LICENSE

Support

For issues and questions:

  • Check the troubleshooting section above
  • Review the logs for detailed error information
  • Open an issue on the repository

Roadmap

  • [ ] Support for additional LLM providers (OpenAI, Anthropic)
  • [ ] Custom critique perspectives and personas
  • [ ] Performance optimization and caching
  • [ ] Advanced synthesis algorithms

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选