Engram Memory MCP
Combines bm25, vector and knowledge graphs to create a comprehensive memory solution. https://github.com/lumetra-io/engram-memory-mcp
README
Engram MCP
Give your AI agents a memory they can trust. Engram lets your AI remember past conversations, facts, and decisions, so it feels more like a real teammate.
This repository contains configuration templates for connecting MCP clients to Engram, a hosted memory service for AI agents.
What is Engram?
Engram is a hosted MCP server that provides reliable memory for AI agents:
- Reliable memory: Agents remember conversations, facts, and decisions — and can show why results were chosen
- Easy setup: Connect via MCP in minutes. Works with Claude Code, Windsurf, Cursor, and other MCP clients
- Built-in controls: Manage retention and cleanup with simple tools — no extra plumbing required
Free during public beta • No credit card required
Quick Setup
1. Get your API key
Sign up at lumetra.io to get your API key.
2. Add to your MCP client
Claude Code:
claude mcp add-json engram '{"type":"http","url":"https://engram.lumetra.io","headers":{"X-API-Key":"<your-api-key>"}}'
Windsurf (~/.codeium/windsurf/mcp_config.json):
{
"mcpServers": {
"engram": {
"serverUrl": "https://engram.lumetra.io",
"headers": {
"X-API-Key": "<your-api-key>"
}
}
}
}
Cursor (~/.cursor/mcp.json or .cursor/mcp.json):
{
"mcpServers": {
"engram": {
"url": "https://engram.lumetra.io",
"headers": {
"X-API-Key": "<your-api-key>"
}
}
}
}
3. Restart your client
Your MCP client will now have access to Engram memory tools.
Available Tools
Once connected, your agent will have access to these memory tools:
store_memory(content)— Store a single memorystore_memories(contents[])— Store multiple memories at oncesearch_memories(query, max_candidates?, hints?)— Search stored memoriesmemory_index(page?, limit?)— Browse all memoriesdelete_by_event(event_id, dry_run?)— Delete specific memoriesexplain_retrieval(retrieval_id, verbosity?)— Understand why results were chosen
Recommended Agent Prompt
Add this to your agent's system prompt to encourage effective memory usage:
You have Engram Memory. Use it aggressively to improve continuity and personalization.
Tools:
- store_memory(content)
- store_memories(contents[])
- search_memories(query, max_candidates?, hints?)
- memory_index(page?, limit?)
- delete_by_event(event_id, dry_run?)
- explain_retrieval(retrieval_id, verbosity?)
Policy:
- Retrieval-first: before answering anything that may rely on prior context, call search_memories (use max_candidates 20–80 for broad queries). Ground answers in results.
- Aggressive storing: capture stable preferences, profile facts, recurring tasks, decisions, and outcomes. Keep each item ≤1–2 sentences. Batch at end of turn with store_memories; use store_memory for single critical facts.
- Cleanup: when info changes, find and delete the old event (memory_index or search_memories → delete_by_event), then store the corrected fact.
Style for stored content: short, declarative, atomic facts.
Examples:
- "User prefers dark mode."
- "User timezone is US/Eastern."
- "Project Alpha deadline is 2025-10-15."
If asked how results were chosen, call explain_retrieval with the retrieval_id returned by search_memories.
Use Cases
Teams use Engram for:
- Support with prior context: Carry forward last ticket, environment, plan, and promised follow‑ups
- Code reviews with context: Store ADRs, owner notes, brittle areas, and post‑mortems as memories
- Shared metric definitions: Keep definitions, approved joins, and SQL snippets in one place
- On‑brand content, consistently: Centralize voice and approved claims for writers
About This Repository
This repository contains:
- This README with setup instructions for popular MCP clients
server.json- MCP server manifest following the official schema
The server.json file uses the official MCP server schema and can be used by MCP clients that support remote server discovery. For manual configuration, use the client-specific examples above.
The actual Engram service runs at https://engram.lumetra.io — there's no local installation required.
Support
- Product site: lumetra.io
- Documentation: See setup instructions above
- Status: Free public beta (no credit card required)
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。