Enhanced Image Analysis MCP Server

Enhanced Image Analysis MCP Server

Enables intelligent analysis and organization of image collections with smart filename generation, metadata extraction, and automated folder organization. Supports batch processing, color analysis, EXIF data extraction, and multiple naming styles for efficient photo management.

Category
访问服务器

README

Enhanced Image Analysis MCP Server

A powerful Model Context Protocol (MCP) server that uses advanced heuristics to analyze images and generate intelligent, descriptive filenames. Perfect for organizing large photo collections, screenshots, and digital assets.

🚀 Features

  • 🎯 Smart Image Analysis: Advanced heuristic analysis of image characteristics
  • 📝 Intelligent Naming: Four naming styles (descriptive, technical, artistic, location)
  • 📂 Batch Processing: Analyze entire directories with recursive search
  • 🎨 Color Analysis: Dominant color detection and classification
  • 📊 EXIF Data: Extract camera settings, timestamps, and metadata
  • 📁 Auto Organization: Sort images into folders by content, date, size, or format
  • 🔍 Comprehensive Metadata: Extract detailed technical information
  • ⚡ Smart Caching: Avoid re-analyzing unchanged images

📦 Installation

Quick Setup

cd /Users/anthonyturner/MCPs/image-analysis-server
chmod +x setup.sh
./setup.sh

Manual Installation

# Install dependencies
pip3 install mcp Pillow

# Make executable
chmod +x enhanced_image_analysis_server.py

⚙️ Configuration

Claude Desktop

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "image-analysis": {
      "command": "python3",
      "args": ["/Users/anthonyturner/MCPs/image-analysis-server/enhanced_image_analysis_server.py"],
      "env": {}
    }
  }
}

Configuration file locations:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\\Claude\\claude_desktop_config.json

🛠️ Available Tools

1. ai_analyze_directory_images

Analyze all images in a directory and generate intelligent names.

Parameters:

  • directory_path (required): Path to directory containing images
  • recursive (optional): Search subdirectories (default: false)
  • rename_files (optional): Actually rename files (default: false)
  • prefix (optional): Add prefix to generated names
  • naming_style (optional): Style of naming (default: "descriptive")

Example Usage:

Analyze all images in ~/Pictures/vacation2024 and suggest better names using technical style

2. ai_analyze_single_image

Analyze a single image file and generate a descriptive name.

Parameters:

  • image_path (required): Path to the image file
  • naming_style (optional): Naming style (default: "descriptive")
  • detailed_analysis (optional): Provide comprehensive analysis (default: false)

Example Usage:

Analyze /Users/me/Desktop/photo.jpg with detailed analysis using artistic naming style

3. extract_comprehensive_metadata

Extract detailed metadata including EXIF data and color analysis.

Parameters:

  • image_path (required): Path to the image file
  • include_color_analysis (optional): Include color palette analysis (default: true)

Example Usage:

Extract comprehensive metadata from my screenshot including color analysis

4. organize_images_by_content

Organize images into folders based on detected content and characteristics.

Parameters:

  • directory_path (required): Path to directory containing images
  • create_folders (optional): Actually create folders and move files (default: false)
  • organization_method (optional): Method to organize (default: "content")

Organization Methods:

  • content: By detected content (screenshots, photos, portraits, etc.)
  • date: By creation date (YYYY-MM format)
  • size: By image resolution (small, medium, large, huge)
  • format: By file format (jpg, png, gif, etc.)

🎨 Naming Styles

Descriptive (Default)

Focuses on visual content and characteristics:

  • red_landscape_photo.jpg
  • blue_portrait_screenshot.png

Technical

Emphasizes technical specifications:

  • large_res_landscape_camera.jpg
  • medium_res_portrait_screenshot.png

Artistic

Highlights aesthetic qualities:

  • red_bright_photo.jpg
  • gray_dark_bw.png

Location

Designed for organizing by context:

  • dated_landscape.jpg
  • photo_portrait.png

📊 Smart Analysis Features

Color Analysis

  • Dominant Colors: Top 5 colors with percentages
  • Color Family: Classification (red, blue, green, etc.)
  • Grayscale Detection: Identifies black & white images
  • Brightness Analysis: Average brightness calculation

Content Detection

The server analyzes filename patterns to detect:

  • Screenshots: Screen captures and UI elements
  • Photos: Camera-taken images and photography
  • Edited Images: Modified or processed images
  • Scans: Digitized documents
  • Logos/Icons: Brand and graphic elements

EXIF Data Extraction

  • Camera Information: Make, model, settings
  • Timestamps: When photo was taken
  • Software: Editing applications used
  • GPS Data: Location information (when available)

🚀 Example Workflows

Organize Downloads Folder

I have a messy Downloads folder with hundreds of images. Can you organize them by content type and suggest better names?

Rename Vacation Photos

Analyze images in ~/Pictures/Hawaii2024 recursively, use descriptive naming with prefix "hawaii", and actually rename the files

Technical Analysis

Extract comprehensive metadata from ~/Desktop/camera_test.jpg including color analysis and EXIF data

Batch Screenshot Organization

Organize all images in ~/Desktop by content, actually create the folders and move files

🔧 Advanced Features

Intelligent Conflict Resolution

  • Automatically handles duplicate filenames
  • Adds incremental counters when needed
  • Preserves original files during preview mode

Performance Optimizations

  • Smart Caching: Avoids re-analyzing unchanged images
  • Efficient Color Analysis: Uses image thumbnails for color detection
  • Batch Processing: Optimized for large directories

Error Handling

  • Graceful Degradation: Continues processing other files if one fails
  • Detailed Error Reports: Clear error messages for troubleshooting
  • File Validation: Ensures only supported formats are processed

📋 Supported Formats

  • JPEG (.jpg, .jpeg)
  • PNG (.png)
  • GIF (.gif)
  • BMP (.bmp)
  • TIFF (.tiff)
  • WebP (.webp)

🛡️ Safety Features

  • Preview Mode: Default behavior suggests changes without applying them
  • Backup Consideration: Always backup important files before batch operations
  • Permission Checks: Validates file system permissions before operations
  • Non-destructive Analysis: Metadata extraction never modifies original files

🚨 Troubleshooting

Common Issues

  1. "No image files found"

    • Verify directory path is correct
    • Check if images are in supported formats
    • Try recursive search for images in subdirectories
  2. "Permission denied"

    • Ensure read/write permissions on target directory
    • Check if files are not locked by other applications
  3. "Failed to analyze image"

    • File may be corrupted or not a valid image
    • Check if sufficient disk space is available

Debug Mode

# Run with debug logging
python3 enhanced_image_analysis_server.py --debug

🔮 Future Enhancements

The server is designed to be easily extensible:

  • AI Vision Integration: Add OpenAI GPT-4 Vision or Google Cloud Vision
  • Face Detection: Identify and organize photos with people
  • Object Recognition: Detect specific objects, animals, or scenes
  • Duplicate Detection: Find and organize duplicate images
  • Cloud Storage: Support for Google Photos, iCloud, etc.

📄 License

MIT License - Feel free to modify and distribute.

🤝 Contributing

Contributions welcome! Areas for improvement:

  • Additional naming styles
  • More sophisticated content detection
  • Integration with cloud vision APIs
  • Performance optimizations
  • Additional metadata extraction

Ready to organize your images intelligently? Install the Enhanced Image Analysis MCP Server and transform your photo management workflow!

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选