EntityIdentification
A MCP server that helps determine if two sets of data belong to the same entity by comparing both exact and semantic equality through text normalization and language model integration.
README
EntityIdentification
Identify whether two sets of data are from the same entity. 识别两组数据是否来自同一主体
This is a MCP (Model Context Protocol) server. 这是一个支持MCP协议的服务器。
Data Comparison Tool
This tool provides a comprehensive way to compare two sets of data, evaluating both exact and semantic equality of their values. It leverages text normalization and a language model to determine if the data originates from the same entity.
Features
- Text Normalization: Converts text to lowercase, removes punctuation, and normalizes whitespace.
- Value Comparison: Compares values directly and semantically (ignoring order for lists).
- JSON Traversal: Iterates through each key in the JSON objects and compares corresponding values.
- Language Model Integration: Uses a generative language model to assess semantic similarity and provide a final judgment on whether the data comes from the same entity.
Installation
To use this tool, ensure you have the necessary dependencies installed. You can install them using pip:
pip install genai
Usage
Functions
-
normalize_text(text):
- Normalizes the input text by converting it to lowercase, removing punctuation, and normalizing whitespace.
-
compare_values(val1, val2):
- Compares two values both exactly and semantically.
- If the values are lists, it ignores the order of elements for semantic comparison.
-
compare_json(json1, json2):
- Compares two JSON objects key by key.
- Uses
compare_valuesto evaluate each key's values. - Integrates a language model to assess semantic similarity and provides a final judgment.
Example
import json
import genai
import re
# Define your JSON objects
json1 = {
"name": "John Doe",
"address": "123 Main St, Anytown, USA",
"hobbies": ["reading", "hiking", "coding"]
}
json2 = {
"name": "john doe",
"address": "123 Main Street, Anytown, USA",
"hobbies": ["coding", "hiking", "reading"]
}
# Compare the JSON objects
comparison_results = compare_json(json1, json2)
# Generate final matching result
model1 = genai.GenerativeModel("gemini-2.0-flash-thinking-exp")
result_matching = model1.generate_content("综合这些信息,你认为可以判断两个数据来自同一主体吗?"+json.dumps(comparison_results, ensure_ascii=False, indent=4))
print(result_matching.text)
Contributing
Contributions are welcome! Please open an issue or submit a pull request.
License
This project is licensed under the MIT License. See the LICENSE file for details.
Contact
If you have any questions or suggestions, please contact me:
- Email: u3588064@connect.hku.hk
- GitHub: u3588064@connect.hku.hk。
Wechat
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。