EPH-MCP: Emergent Pattern Hunter
Enables AI systems to reason through emergent thinking by breaking queries into fragments that interact and form patterns, simulating how insights naturally arise in complex systems. Provides tools for emergent reasoning, pattern analysis, thought comparison, and reasoning session history.
README
🕸️ EPH-MCP: Emergent Pattern Hunter
A revolutionary thinking architecture for LLMs via MCP (Model Context Protocol)
EPH-MCP transforms how AI systems reason by simulating the emergence of insights from interacting thought fragments, similar to how patterns arise in complex physical systems.
Key Features
- Bottom-up Insight Emergence: Instead of forcing conclusions, the insights just show up once all the pieces bounce around enough.
- Quantum-like Thought Dynamics: Ideas overlap, collide, and stick together—sometimes they’re in two states at once until the picture clears.
- Multi-scale Pattern Detection: We can spot the small stuff and the big picture at the same time—like zooming from street level to skyline.
- Contradiction as Feature: Tension isn’t a bug, it’s fuel. Conflicts push the thinking somewhere new.
- Field-based Reasoning: Everything plays out in this high-dimensional “idea space,” where concepts pull, push, and interact like a living grid.
🚀 Quick Start
Installation
# Clone the repository
git clone https://github.com/yourusername/eph-mcp.git
cd eph-mcp
# Install dependencies
pip install -r requirements.txt
python -m spacy download en_core_web_sm
# Quick test
python quickstart.py
Basic Usage
Start MCP Server
python -m eph_mcp.server
The server will start on localhost:3333 by default.
How It Works
EPH uses a 5-phase process:
Phase 1: Thought Explosion
First we blow up the question into a bunch of little sparks—50 to 150 fragments, each one a different angle or half-formed idea.
We mix in every trick we’ve got: free association, “what if” games, parallel universes, quantum superposition vibes.
Each fragment lands in some wild high-dimensional space, like confetti drifting around a cosmic dance floor.
Phase 2: Interaction Dynamics
Now those fragments start bumping into each other like charged particles.
- Similar ones pull together.
- Opposites push apart.
- Some bind tightly, others spin off.
It’s basically like running a mini-universe simulation where ideas collide until the system chills into something stable (simulated annealing).
Phase 3: Pattern Detection
From the chaos, we spot emergent shapes—like finding constellations in the stars:
- Crystalline lattices → clean, regular structures
- Strange attractors → looping chaos
- Phase transitions → that “sudden click” when ideas reorganize
- Soliton waves → insights that keep traveling without losing shape
- …plus more funky forms
Phase 4: Pattern Crystallization
Here, the raw patterns solidify into actual insights.
We check each one for:
- Confidence (does it hold up?)
- Novelty (is it fresh?)
- Clarity (can you actually explain it to a friend?)
We don’t force everything to agree—contradictions are saved too, like tension in a good story.
Phase 5: Pattern Weaving
Finally, we stitch the insights together into something you can actually use.
Different ways to weave:
- Convergent synthesis → pull it all into one neat answer
- Dialectical → thesis + antithesis → synthesis
- Narrative threading → tell it like a story, connecting the dots naturally
📊 Configuration
Create a config.json file to customize behavior:
{
"explosion": {
"n_fragments": 100,
"temperature": 1.5,
"embedding_model": "all-MiniLM-L6-v2"
},
"interaction": {
"iterations": 150,
"initial_temperature": 1.0,
"cooling_rate": 0.995
},
"detection": {
"min_pattern_size": 3,
"pattern_threshold": 0.5
},
"crystallization": {
"confidence_threshold": 0.5,
"novelty_threshold": 0.3
},
"weaving": {
"max_insights": 5,
"coherence_threshold": 0.6
}
}
🛠️ MCP Tools
The server exposes 4 main tools via MCP:
think_emergently
Main reasoning tool - applies full EPH process
{
"query": "Your question here",
"return_intermediate": false,
"visualize": true
}
analyze_patterns
Analyze text for emergent patterns without full reasoning
{
"text": "Text to analyze",
"pattern_types": ["contradiction", "harmony"],
"min_confidence": 0.5
}
compare_thoughts
Compare multiple ideas for relationships
{
"thoughts": ["idea 1", "idea 2", "idea 3"],
"find_contradictions": true,
"find_harmonies": true
}
reasoning_history
Access and analyze past reasoning sessions
{
"last_n": 5,
"analyze": true
}
Enable with visualization.enabled: true in config.
Testing
Run the test suite:
# Basic tests
python tests/test_basic.py
# Full test suite (if available)
pytest tests/
📚 Examples
Explore different reasoning scenarios:
python examples/usage_examples.py
Contributing
Contributions are welcome! Areas of interest:
- New generation strategies for thought explosion
- Alternative pattern detection algorithms
- Visualization improvements
- Performance optimization
- Integration with other MCP tools
Acknowledgments
- Inspired by physics and emergent systems
"In the dance of fragments, meaning emerges" - EPH Philosophy
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
mcp-server-qdrant
这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。