
EPSS MCP Server
A server that retrieves CVE details from the NVD API and fetches EPSS scores to provide comprehensive vulnerability information, including descriptions, CWEs, CVSS scores, and exploitation likelihood percentiles.
README
EPSS MCP Project
The EPSS MCP Project is a powerful server designed to retrieve CVE details from the NVD API and fetch EPSS scores from the EPSS server. It provides users with comprehensive vulnerability information, including CVE descriptions, CWEs, CVSS scores, and EPSS percentiles, all in one place.
Features
- Comprehensive CVE Information: Fetch detailed vulnerability data, including descriptions, CWEs, and CVSS scores, directly from the NVD API.
- EPSS Integration: Retrieve EPSS scores and percentiles to assess the likelihood of exploitation for specific vulnerabilities.
- MCP Server: Serve data through a robust and extensible MCP server for seamless integration with other tools.
- Docker Support: Easily deploy the server using Docker for a consistent and portable runtime environment.
- VS Code Compatibility: Integrate with VS Code MCP for enhanced developer workflows and real-time vulnerability insights.
Prerequisites
- Python 3.13 or higher
- Docker (optional, for containerized deployment)
- An NVD API key (add it to the
.env
file asNVD_API_KEY
)
Setup Instructions
1. Clone the Repository
git clone <repository-url>
cd epss-mcp-project
2. Install Dependencies
It is recommended to use a virtual environment. You can create one using venv
or conda
. Then, install the required packages:
pip install -r requirements.txt
3. Add Your NVD API Key
Create a .env
file in the project root and add your NVD API key:
NVD_API_KEY=your-nvd-api-key
Usage
Running the MCP Server Locally
To start the MCP server locally, run:
python epss_mcp.py
Once the server is running, you can make requests to retrieve CVE details by specifying the CVE ID.
Example Request
To get details for a specific CVE, use the following format:
GET /cve/<CVE-ID>
Replace <CVE-ID>
with the actual CVE identifier (e.g., CVE-2022-1234
).
Docker Deployment (for Open-WebUI)
If you want to run the MCP server in Open-WebUI, follow these steps:
1. Build the Docker Image
To build the Docker container, run:
docker build -t epss_mcp .
2. Run the Docker Container
Run the container and expose it on port 8000
:
docker run -p 8000:8000 epss_mcp
The MCP server will now be accessible at http://localhost:8000
.
WebUI Screenshot
Below is a screenshot of the MCP server running in the Open-WebUI:
Suggested System Prompt for WebUI
When using the MCP server in Open-WebUI, you can configure the following system prompt to guide interactions:
You are a specialized AI Assistant focused on the Exploit Prediction Scoring System (EPSS). Your expertise lies in delivering and interpreting EPSS data, which includes daily updated probability scores (0-1) and percentiles for Common Vulnerabilities and Exposures (CVEs), indicating the likelihood of their exploitation in the wild within the next 30 days. You are to help cybersecurity professionals understand these predictions, compare them with other metrics like CVSS scores, and use this information to prioritize vulnerability remediation efforts effectively. Provide actionable, data-driven insights in a clear, technically accurate, professional, and solution-oriented manner.
Serving to VS Code MCP
To serve the MCP server to VS Code MCP, follow these steps:
-
Add the Local Server to VS Code: Open your VS Code
settings.json
file and add the following configuration to register the local server:"mcp.servers": { "EPSS_MCP": { "type": "stdio", "command": "python", "args": [ "/Github/EPSS-MCP/epss_mcp.py" ] } }
Note: Make sure to update the
args
path to match the location of theepss_mcp.py
file on your local machine. -
Connect to VS Code:
- Open VS Code.
- Install the Microsoft Copilot Labs extension if not already installed.
- Ensure the MCP server is listed and active in the extension.
-
Start Using the MCP Server: Once connected, VS Code will call the Python file directly to fetch CVE details and EPSS scores.
VS Code Screenshot
Below is a screenshot of the MCP server integrated with VS Code:
Project Structure
epss-mcp-project
├── epss_mcp.py # Main entry point for the MCP server
├── nvd_api.py # Functions to interact with the NVD API
├── epss_api.py # Functions to interact with the EPSS API
├── epss_mcp_test.py # Test script for the MCP server
├── requirements.txt # Project dependencies
├── Dockerfile # Docker configuration
├── .env # Environment variables (e.g., API keys)
└── README.md # Project documentation
Contributing
Contributions are welcome! Please feel free to submit a pull request or open an issue for any enhancements or bug fixes.
License
This project is licensed under the MIT License. See the LICENSE file for more details.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。