ERPNext MCP Server

ERPNext MCP Server

A production-ready server that enables AI assistants like Claude Desktop to seamlessly integrate with ERPNext for document operations, reporting, and custom workflows through natural language interaction.

Category
访问服务器

README

ERPNext MCP Server

A production-ready Model Context Protocol (MCP) server for seamless ERPNext integration with AI assistants like Claude Desktop.

License: MIT Node.js Version Docker

🚀 Features

  • Complete ERPNext Integration: Full CRUD operations for documents, DocTypes, reports, and dashboards
  • Production-Ready Security: OAuth 2.1, API key authentication, rate limiting, and comprehensive audit logging
  • High Performance: Redis caching, connection pooling, and optimized API calls
  • Enterprise Features: Multi-tenancy support, horizontal scaling, and high availability
  • Comprehensive Monitoring: Health checks, metrics, and detailed logging
  • Docker Support: Multi-stage builds for minimal attack surface
  • TypeScript: Full type safety and modern JavaScript features

📋 Prerequisites

  • Ubuntu 20.04/22.04/24.04 LTS
  • Node.js 18+
  • Redis 6+
  • ERPNext instance with API access
  • Digital Ocean droplet (minimum 2GB RAM)

🛠️ Quick Installation

Option 1: Automated Installation (Recommended)

# Download and run the installation script
wget https://raw.githubusercontent.com/YOUR_USERNAME/erpnext-mcp-server/main/scripts/install.sh
chmod +x install.sh
sudo ./install.sh

Option 2: Manual Installation

# Clone the repository
git clone https://github.com/sivabhogela88/erpnext-mcp-server.git
cd erpnext-mcp-server

# Install dependencies
npm ci

# Copy and configure environment variables
cp .env.example .env
nano .env  # Edit with your ERPNext credentials

# Build the project
npm run build

# Start the server
npm start

Option 3: Docker Installation

# Build the Docker image
docker build -t erpnext-mcp-server .

# Run with Docker Compose
docker-compose up -d

⚙️ Configuration

Environment Variables

Create a .env file with the following configuration:

# ERPNext Configuration
ERPNEXT_URL=https://your-erpnext-instance.com
ERPNEXT_API_KEY=your_api_key_here
ERPNEXT_API_SECRET=your_api_secret_here

# OAuth Configuration (optional)
OAUTH_ENABLED=false
OAUTH_CLIENT_ID=your_oauth_client_id
OAUTH_CLIENT_SECRET=your_oauth_client_secret
OAUTH_REDIRECT_URI=http://localhost:3000/callback

# Server Configuration
NODE_ENV=production
PORT=3000
LOG_LEVEL=info

# Security Configuration
ENABLE_AUTH=true
JWT_SECRET=your_jwt_secret_here
ENCRYPTION_KEY=your_encryption_key_here
ALLOWED_ORIGINS=http://localhost,https://your-domain.com

# Redis Configuration
REDIS_URL=redis://localhost:6379
REDIS_PASSWORD=your_redis_password

# Rate Limiting
RATE_LIMIT_ENABLED=true
RATE_LIMIT_MAX_REQUESTS=100
RATE_LIMIT_WINDOW_MS=60000

Claude Desktop Configuration

Add the following to your Claude Desktop configuration file:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json Linux: ~/.config/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "erpnext": {
      "command": "node",
      "args": ["/opt/erpnext-mcp-server/dist/index.js"],
      "env": {
        "ERPNEXT_URL": "https://your-erpnext-instance.com",
        "ERPNEXT_API_KEY": "your_api_key",
        "ERPNEXT_API_SECRET": "your_api_secret"
      }
    }
  }
}

🔧 Available Tools

Document Operations

  • create_document - Create new ERPNext documents
  • read_document - Retrieve document details
  • update_document - Update existing documents
  • delete_document - Delete documents
  • list_documents - List documents with filters

Schema Operations

  • get_doctype - Get DocType schema and field definitions
  • list_doctypes - List all available DocTypes

Reporting & Analytics

  • get_report - Execute and retrieve report data
  • create_dashboard - Create custom dashboards

Advanced Operations

  • execute_method - Execute custom ERPNext methods

🔒 Security Features

  • Authentication: OAuth 2.1 with PKCE or API key/secret
  • Encryption: TLS 1.3 for all communications
  • Rate Limiting: Configurable per-endpoint limits
  • Input Validation: Zod schemas for all inputs
  • Audit Logging: Comprehensive activity logs
  • CORS Protection: Configurable allowed origins
  • Container Security: Non-root user, read-only filesystem

📊 Monitoring & Logging

Health Check Endpoint

curl http://localhost:3000/health

Logs Location

  • Application logs: /opt/erpnext-mcp-server/logs/app.log
  • Error logs: /opt/erpnext-mcp-server/logs/error.log
  • Access logs: /opt/erpnext-mcp-server/logs/access.log

Monitoring with Systemd

# Check service status
sudo systemctl status erpnext-mcp

# View logs
sudo journalctl -u erpnext-mcp -f

# Restart service
sudo systemctl restart erpnext-mcp

🚀 Production Deployment

Digital Ocean Recommended Specs

Basic Setup (up to 50 concurrent users):

  • 2 vCPUs
  • 4GB RAM
  • 50GB SSD
  • $24/month

Production Setup (up to 200 concurrent users):

  • 4 vCPUs
  • 8GB RAM
  • 100GB SSD
  • $48/month

Enterprise Setup (200+ concurrent users):

  • 8+ vCPUs
  • 16GB+ RAM
  • 200GB+ SSD
  • Load balancer recommended

Security Hardening Checklist

  • [ ] Configure firewall (UFW) rules
  • [ ] Enable fail2ban for brute force protection
  • [ ] Set up SSL/TLS with Let's Encrypt
  • [ ] Configure log rotation
  • [ ] Enable automatic security updates
  • [ ] Set up monitoring alerts
  • [ ] Regular security audits
  • [ ] Implement backup strategy

🧪 Testing

# Run all tests
npm test

# Run tests with coverage
npm run test:coverage

# Run security tests
npm run test:security

# Run linting
npm run lint

🐛 Troubleshooting

Common Issues

  1. Connection refused errors

    • Check ERPNext URL and credentials
    • Verify firewall rules
    • Check Redis connection
  2. Authentication failures

    • Verify API key/secret
    • Check token expiration
    • Review audit logs
  3. Performance issues

    • Monitor Redis cache hit rate
    • Check ERPNext server load
    • Review rate limiting settings

Debug Mode

Enable debug logging:

LOG_LEVEL=debug npm start

📈 Performance Optimization

  • Caching: Redis caching with 5-minute TTL
  • Connection Pooling: Reuse HTTP connections
  • Batch Operations: Support for bulk document operations
  • Compression: Gzip compression for API responses
  • CDN: Optional CloudFlare integration

🤝 Contributing

We welcome contributions! Please see our Contributing Guidelines for details.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • Anthropic for the Model Context Protocol
  • Frappe/ERPNext team for the amazing ERP platform
  • Community contributors and testers

📞 Support


Built with ❤️ for the ERPNext community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选