
ethereum-validator-queue-mcp
An MCP server that tracks Ethereum’s validator activation and exit queues in real time, enabling AI agents to monitor staking dynamics and network participation trends.
README
Ethereum Validator Queue MCP
An MCP server that tracks Ethereum’s validator activation and exit queues in real time, enabling AI agents to monitor staking dynamics and network participation trends.
Features
- Tools:
get_activation_queue
: Retrieves statistics about the Ethereum validator activation queue, including queue length, total active validators, entering validators' balance, and estimated wait time.get_exit_queue
: Retrieves statistics about the Ethereum validator exit queue, including queue length, total active validators, exiting validators' balance, and estimated wait time.get_validator_status
: Queries the status of a specific validator by its public key, providing details such as status, effective balance, activation epoch, and exit epoch.
- Prompt:
analyze_queue
: A reusable prompt template for LLMs to analyze validator queue trends, including staking demand, impact on ETH price, and network security.
Installation
Prerequisites
- Python: Version 3.10 or higher
- uv: A fast and modern Python package manager (installation instructions)
Setup
-
Clone the Repository:
git clone https://github.com/kukapay/ethereum-validator-queue-mcp.git cd ethereum-validator-queue-mcp
-
Install dependencies:
uv sync
-
Install to Claude Desktop:
Install the server as a Claude Desktop application:
uv run mcp install main.py --name "Ethereum Validator Queue"
Configuration file as a reference:
{ "mcpServers": { "Ethereum Validator Queue": { "command": "uv", "args": [ "--directory", "/path/to/ethereum-validator-queue-mcp", "run", "main.py" ] } } }
Replace
/path/to/ethereum-validator-queue-mcp
with your actual installation path.
Usage
Tools and Prompts
-
Tools:
get_activation_queue()
: Returns activation queue stats, e.g., "Current activation queue length: 7189 validators, Total active validators: 1084363, Entering validators balance: 283043.84 ETH, Estimated wait time: Approximately 8.0 days."get_exit_queue()
: Returns exit queue stats, e.g., "Current exit queue length: 27152 validators, Total active validators: 1084363, Exiting validators balance: 882528.00 ETH, Estimated wait time: Approximately 30.2 days."get_validator_status(pubkey)
: Returns validator details for a given public key (48-byte hex string starting with '0x'), e.g., "Validator 0x1234...: Status: active_online, Effective Balance: 32.00 ETH, Activation Epoch: 123456, Exit Epoch: N/A."
-
Prompt:
analyze_queue()
: Generates a prompt for LLMs to analyze queue trends, e.g., "Analyze the current Ethereum validator queues: What do the current queue lengths indicate about staking demand? How might this impact ETH price and network security? Provide historical context if possible."
Example Interaction
Below are examples of natural language prompts you might use in an MCP-compatible client (e.g., Claude Desktop) and the corresponding outputs from the server, based on sample data.
-
Get Activation Queue Statistics:
- Prompt: "Show me the current Ethereum validator activation queue status."
- Command:
get_activation_queue()
- Output:
Current activation queue length: 7189 validators Total active validators: 1084363 Entering validators balance: 283043.84 ETH Estimated wait time: Approximately 8.0 days (assuming ~900 activations per day)
-
Get Exit Queue Statistics:
- Prompt: "What's the status of the Ethereum validator exit queue?"
- Command:
get_exit_queue()
- Output:
Current exit queue length: 27152 validators Total active validators: 1084363 Exiting validators balance: 882528.00 ETH Estimated wait time: Approximately 30.2 days (assuming ~900 exits per day)
-
Get Validator Status:
- Prompt: "Check the status of the validator with public key 0x93247f2f..."
- Command:
get_validator_status("0x93247f2f...")
- Output (assuming sample data from the API):
Validator 0x93247f2f...: Status: active_online Effective Balance: 32.00 ETH Activation Epoch: 123456 Exit Epoch: N/A
-
Analyze Queue Trends:
- Prompt: "Analyze the current Ethereum validator queue trends."
- Command:
analyze_queue()
- Output (prompt sent to LLM for analysis):
Analyze the current Ethereum validator queues: - What do the current queue lengths indicate about staking demand? - How might this impact ETH price and network security? - Provide historical context if possible.
- LLM Response (example, depends on the LLM):
The current Ethereum validator queues show a significant exit queue (27,152 validators) compared to the activation queue (7,189 validators), indicating a higher number of validators are leaving than joining. This could suggest reduced staking demand, possibly due to market conditions or profitability concerns. The large exiting balance (882,528 ETH) may increase selling pressure on ETH, potentially impacting its price negatively in the short term. However, the network remains secure with over 1 million active validators. Historically, exit queue spikes have occurred during market downturns or after major network upgrades (e.g., Shanghai upgrade). Further analysis of staking rewards and market trends is recommended.
- LLM Response (example, depends on the LLM):
License
This project is licensed under the MIT License. See the LICENSE file for details.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。