EX MCP Server

EX MCP Server

Provides unified development tools including code analysis, debugging, refactoring, documentation, testing, and project automation through multiple LLM providers (KIMI, GLM, OpenRouter). Features agentic audit capabilities with multi-model consensus for finding issues and generating direct fixes.

Category
访问服务器

README

EX MCP Server

EX MCP Server is a Model Context Protocol (MCP) server that connects modern LLM providers and tools to MCP‑compatible clients (e.g., Claude Desktop/CLI). It provides a unified set of analysis, debugging, refactoring, documentation, testing, and project automation tools accessible over the MCP stdio protocol.

Key Capabilities

  • Unified MCP server exposing rich development tools:
    • analyze, codereview, debug, refactor, tracer, testgen, precommit, listmodels, version
  • Provider integrations:
    • KIMI (Moonshot), GLM (Zhipu), OpenRouter, and custom OpenAI‑compatible endpoints
  • MCP‑first architecture:
    • Subprocess stdio transport with direct config examples for Claude Desktop/CLI
  • Docker and local dev support:
    • Docker image build/publish, local virtualenv (.venv), and cross‑platform scripts

Installation

Prerequisites

  • Python 3.9+
  • Git
  • For local dev: virtualenv support
  • Optional: Docker and Docker Compose

Clone

git clone https://github.com/BeehiveInnovations/ex-mcp-server.git
cd ex-mcp-server

Setup (local)

python -m venv .venv
# Windows
.venv\\Scripts\\activate
# macOS/Linux
source .venv/bin/activate

pip install -r requirements.txt
pip install -r requirements-dev.txt

cp .env.example .env
# Set at least one provider key (KIMI_API_KEY, GLM_API_KEY, OPENROUTER_API_KEY, or CUSTOM_API_URL/CUSTOM_API_KEY)

Run (local)

python -m server   # or: python server.py

Configure a client (Claude Desktop/CLI)

Minimal example (stdio):

{
  "mcpServers": {
    "ex": {
      "type": "stdio",
      "trust": true,
      "command": "python",
      "args": ["-u", "scripts/mcp_server_wrapper.py"],
      "cwd": "/absolute/path/to/ex-mcp-server",
      "env": {
        "MCP_SERVER_NAME": "ex",
        "MCP_SERVER_ID": "ex-server",
        "PYTHONPATH": "/absolute/path/to/ex-mcp-server",
        "ENV_FILE": "/absolute/path/to/ex-mcp-server/.env"
      }
    }
  }
}

See the examples/ directory for more configs (macOS, WSL, desktop CLI variants).

Docker

Build and run locally:

docker build -t ex-mcp-server:latest .
docker run --rm -it ex-mcp-server:latest

A reverse proxy example is provided (nginx.conf) and a remote compose file (docker-compose.remote.yml) that exposes the server as ex-mcp.

Usage Overview

  • Use the version tool to verify install:
# In Claude Desktop config, call the version tool
  • Common tools:
    • analyze: smart file analysis
    • codereview: professional code review
    • debug: debugging assistant
    • refactor: code refactoring
    • tracer: static analysis / call chain aid
    • testgen: test generation
    • precommit: quick pre-commit validation
    • listmodels: show available models/providers

Provider‑native Web Browsing Schemas

  • Kimi (Moonshot): inject an OpenAI function tool named "web_search" with a string parameter "query".
  • GLM (Zhipu): enable tools = [{"type":"web_search","web_search":{}}] only when allowed by env.
  • Set these via env for production readiness:
    • KIMI_ENABLE_INTERNET_TOOL=true and KIMI_INTERNET_TOOL_SPEC to a valid JSON tool schema
    • GLM_ENABLE_WEB_BROWSING=true when appropriate (and other GLM browsing flags as documented)

Hidden Model Router (Auto Model Selection)

The server can auto-select a concrete model at the MCP boundary so users don’t need to specify one.

  • Enable: HIDDEN_MODEL_ROUTER_ENABLED=true
  • Sentinels: ROUTER_SENTINEL_MODELS=glm-4.5-flash,auto
  • Default: DEFAULT_MODEL=glm-4.5-flash (a sentinel)

Behavior:

  • If a tool requires a model and incoming model is a sentinel (or "auto"), the server resolves a concrete model.
  • Structured logs emitted by the server (logger name: "server"):
    • EVENT boundary_model_resolution_attempt input_model=... tool=... sentinel_match=... hidden_router=...
    • EVENT boundary_model_resolved input_model=... resolved_model=... tool=...

Notes:

  • The Consensus tool intentionally does not resolve models at the MCP boundary (requires_model = False). You will see the "attempt" log at the boundary, and per-step model selection happens inside the tool.

Tip: Use listmodels to see configured providers/models.

Agentic Audit with Real Models (EX‑AI)

Use a consensus-based, multi-model audit to find issues and get direct fixes.

  1. Set provider keys in .env:
  • KIMI_API_KEY=...
  • GLM_API_KEY=...
  1. Run the audit script:
python scripts/exai_agentic_audit.py --models glm-4.5-air kimi-k2-0905-preview

Or rely on env defaults (GLM_AUDIT_MODEL, KIMI_AUDIT_MODEL) and just:

python scripts/exai_agentic_audit.py

The script returns JSON:

{
  "issues": [ { "title": str, "evidence": str, "direct_fix": str }... ],
  "summary": str
}
  1. Interpreting results:
  • Each issue has “direct_fix” with exactly what to change and where.
  • Re-run after fixes to validate improvements.

Tests: End-to-end (no real keys required)

We include an “ultimate” test file designed for EX‑AI‑style validation:

  • tests/test_e2e_exai_ultimate.py
  • Each assert prints a Direct Fix if it fails.
  • Run: python -m pytest -q tests/test_e2e_exai_ultimate.py

CI/Test Hygiene (EX fork)

This fork disables some upstream providers by design. If you run the full test suite, import errors may occur for those optional providers. See docs/ci-test-notes.md for ways to skip/guard those tests in CI.

Configuration

  • Environment file: .env (see .env.example for available variables)
  • Key variables:
    • DEFAULT_MODEL, LOCALE, MAX_MCP_OUTPUT_TOKENS
    • Provider keys: KIMI_API_KEY, GLM_API_KEY, OPENROUTER_API_KEY
    • Custom API: CUSTOM_API_URL, CUSTOM_API_KEY
  • Logging: logs/ directory (Docker and local scripts manage ownership/paths)

Attribution

This project is based on the original work at:

  • https://github.com/BeehiveInnovations/zen-mcp-server We have forked/copied and adapted it to create EX MCP Server. Attribution to the original authors is preserved.

Our EX‑specific Changes (Zen → EX)

  • Rebranding:
    • Service name: zen-mcp → ex-mcp
    • Non-root user: zenuser → exuser (Dockerfile, file ownership)
    • Virtual environment: .zen_venv → .venv
    • Branding strings: “Zen MCP Server” → “EX MCP Server”
  • Examples/configs:
    • Server IDs: "zen" → "ex"
    • Commands: zen-mcp-server → ex-mcp-server
    • Paths updated to ex-mcp-server
  • CI/workflows & templates:
    • GitHub discussions/links point to ex-mcp-server
    • GHCR image names: ghcr.io/<org>/ex-mcp-server:...
  • Architecture intent:
    • MCP-first stdio transport, reverse proxy alignment, and consistent service naming

Contributing

Please see CONTRIBUTING.md for development workflow, coding standards, and testing.

License

See the LICENSE file in this repository.

Additional Resources

  • MCP Spec: https://modelcontextprotocol.io/
  • Claude Desktop docs for MCP: https://docs.anthropic.com/claude/docs/model-context-protocol
  • Original source (upstream): https://github.com/BeehiveInnovations/zen-mcp-server
  • Current project: https://github.com/BeehiveInnovations/ex-mcp-server

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选