
Example MCP Server
A demonstration MCP server built with FastMCP v2.0 that provides basic mathematical calculations and greeting functionality. Features Docker containerization, comprehensive testing, and CI/CD automation for learning MCP development patterns.
README
MCP Server with FastMCP v2.0
A Model Control Protocol (MCP) server implementation using FastMCP v2.0, featuring Docker containerization, comprehensive testing, and CI/CD automation.
Features
- 🚀 Built with FastMCP v2.0
- 🐳 Docker containerization with multi-stage builds
- 📦 Modern Python packaging with
uv
- 🧪 Comprehensive test suite with pytest
- 🔄 GitHub Actions CI/CD pipeline
- 🛡️ Security scanning and dependency management
- 📊 Code coverage reporting
- 🔧 Automated code formatting and linting
Quick Start
Prerequisites
- Python 3.10+
- uv for dependency management
- Docker (optional, for containerization)
Installation
- Clone the repository:
git clone <repository-url>
cd nikolas-mcp
- Install dependencies using uv:
uv sync
- Run the server:
uv run python -m mcp_server.main
Using Docker
- Build the Docker image:
docker build -t mcp-server .
- Run the container:
docker run -p 8000:8000 mcp-server
- Or use docker-compose:
docker-compose up
Available Tools
The MCP server provides the following tools:
calculate
Evaluates mathematical expressions safely.
Parameters:
expression
(string): Mathematical expression to evaluate
Example:
{
"tool": "calculate",
"arguments": {
"expression": "2 + 3 * 4"
}
}
greet
Generates friendly greeting messages.
Parameters:
name
(string): Name of the person to greet
Example:
{
"tool": "greet",
"arguments": {
"name": "World"
}
}
Resources
config://settings
- Server configuration settingsinfo://server
- General server information
Prompts
help
- Display help information about available capabilities
Development
Setup Development Environment
# Install development dependencies
uv sync --dev
# Install pre-commit hooks
uv run pre-commit install
Running Tests
# Run all tests
uv run pytest
# Run tests with coverage
uv run pytest --cov=src --cov-report=html
# Run specific test file
uv run pytest tests/test_main.py -v
Code Quality
# Format code
uv run ruff format .
# Lint code
uv run ruff check .
# Type checking
uv run mypy src/
Project Structure
nikolas-mcp/
├── src/
│ └── mcp_server/
│ ├── __init__.py
│ ├── main.py # Main server implementation
│ └── server.py # Server utilities and config
├── tests/
│ ├── __init__.py
│ ├── conftest.py # Pytest configuration
│ ├── test_main.py # Main functionality tests
│ ├── test_server.py # Server utilities tests
│ └── test_integration.py # Integration tests
├── .github/
│ └── workflows/
│ ├── ci.yml # CI/CD pipeline
│ └── dependabot.yml # Dependabot auto-merge
├── Dockerfile
├── docker-compose.yml
├── pyproject.toml # Project configuration
└── README.md
CI/CD Pipeline
The project includes a comprehensive GitHub Actions pipeline:
- Lint and Format: Runs ruff for code formatting and linting
- Test Suite: Runs tests across multiple Python versions and OS platforms
- Security Scan: Performs security vulnerability scanning
- Docker Build: Builds and tests Docker images
- Auto-publish: Publishes to PyPI and Docker Hub on release
Required Secrets
For full CI/CD functionality, configure these GitHub secrets:
PYPI_API_TOKEN
- PyPI authentication tokenDOCKERHUB_USERNAME
- Docker Hub usernameDOCKERHUB_TOKEN
- Docker Hub access token
Configuration
Environment Variables
LOG_LEVEL
- Logging level (default: INFO)PYTHONPATH
- Python path for module resolution
Server Configuration
The server can be configured via the ServerConfig
class in src/mcp_server/server.py
:
config = ServerConfig()
config.max_connections = 200
config.timeout = 60
Docker Configuration
Multi-stage Build
The Dockerfile uses multi-stage builds for optimized image size:
- Base stage: Sets up Python and system dependencies
- Dependencies stage: Installs Python packages with uv
- Runtime stage: Copies application code and runs the server
Health Checks
The container includes health checks to ensure the server is running correctly.
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Make your changes
- Run tests and ensure they pass
- Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
If you encounter any issues or have questions:
- Check the Issues page for existing problems
- Create a new issue with detailed information
- Refer to the FastMCP documentation for FastMCP-specific questions
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。