Excel MCP Server

Excel MCP Server

A Model Context Protocol server that provides tools for reading, updating, filtering, and visualizing Excel data through a simple API.

Category
访问服务器

README

alt text

uv init mcp-server-demo

cd mcp-server-demo

uv add "mcp[cli]" uv pip install mcp-python pandas matplotlib openpyxl fastapi uvicorn pillow uv run mcp dev server.py

uv run mcp install server.py

Excel MCP Server

This project implements a Model Context Protocol (MCP) server that provides tools and resources for working with Excel data. The server offers functionality for reading, updating, filtering, and visualizing Excel data through a simple API.

Features

  • Excel Operations: Read from and write to Excel files
  • Data Filtering: Filter and search data based on various criteria
  • Data Analysis: Generate statistical summaries and pivot tables
  • Data Visualization: Create various charts and visualizations
  • Update Operations: Update cells, add rows, delete rows
  • Anomaly Detection: Find outliers in numeric data
  • Chart Recommendations: Automatically suggest appropriate visualizations

Installation

  1. Install the required dependencies:
pip install mcp-python pandas matplotlib openpyxl fastapi uvicorn pillow
  1. Clone this repository or download the files:
    • server.py - The MCP server implementation
    • client.py - Demo client to showcase the features

Usage

Starting the Server

Run the server:

python server.py

The server will start at http://localhost:8000 by default.

Using the Client Demo

The client demo script showcases various operations you can perform with the MCP server:

python client.py

This will:

  1. Create a sample Excel file (if it doesn't exist)
  2. Demonstrate basic Excel operations
  3. Show data filtering capabilities
  4. Generate visualizations
  5. Perform data updates
  6. Detect anomalies in the data

Using the API Directly

You can use the MCP server's API directly:

Tools API

Call tools using POST requests to /tools/{tool_name}:

import requests

# Example: Read Excel file
response = requests.post(
    "http://localhost:8000/tools/read_excel",
    json={"filename": "example.xlsx", "sheet_name": "Sheet1"}
)
data = response.json()

Resources API

Access resources using GET or POST requests to /resources/{resource_path}:

# Example: Get sheet list
response = requests.get("http://localhost:8000/resources/excel://example.xlsx/sheets")
sheets = response.json()

Available Tools

Excel Operations

  • read_excel - Read data from an Excel file
  • write_excel - Write data to an Excel file
  • get_excel_sheets - Get the list of sheets in an Excel file

Data Filtering

  • filter_data - Filter Excel data based on conditions
  • search_data - Search for a term in Excel data

Data Analysis

  • summarize_data - Get statistical summary of Excel data
  • create_pivot_table - Create a pivot table from Excel data

Data Visualization

  • visualize_chart - Create various chart types (bar, line, scatter, pie, hist)
  • recommend_charts - Get chart recommendations based on data structure

Update Operations

  • update_cell - Update a specific cell in an Excel file
  • add_row - Add a new row to an Excel file
  • delete_rows - Delete rows from an Excel file based on filters

Additional Features

  • detect_anomalies - Find anomalies in numeric data using Z-scores
  • export_to_csv - Export Excel data to CSV format

Available Resources

  • excel://{filename}/sheets - Get list of sheets in an Excel file
  • excel://{filename}/sheet/{sheet_name} - Get data from a specific sheet
  • excel://{filename}/sheet/{sheet_name}/summary - Get summary of sheet data
  • excel://{filename}/sheet/{sheet_name}/filter - Filter data in a sheet

Example: Creating a Custom Client

You can create your own client to interact with the MCP server:

import requests

def call_tool(tool_name, params):
    """Call an MCP tool"""
    url = f"http://localhost:8000/tools/{tool_name}"
    response = requests.post(url, json=params)
    return response.json()

# Example: Get chart visualization
chart_result = call_tool("visualize_chart", {
    "filename": "sales_data.xlsx",
    "sheet_name": "Sheet1",
    "chart_type": "bar",
    "x_column": "Month",
    "y_columns": ["Revenue"],
    "title": "Monthly Revenue"
})

# Save chart image
if chart_result.get("success", False) and "image" in chart_result:
    import base64
    img_data = base64.b64decode(chart_result["image"])
    with open("revenue_chart.png", "wb") as f:
        f.write(img_data)

Integration with AI Models

This MCP server can be easily integrated with AI models like Claude to provide natural language interfaces to Excel data:

  1. The AI can call the appropriate MCP tool based on the user's request
  2. Process the data returned by the tool
  3. Present insights and visualizations to the user

This creates an interactive "Excel assistant" that can understand natural language requests to analyze and manipulate Excel data.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选