Excel MCP Server
Enables AI assistants to create, read, write, and manipulate Excel files (.xlsx, .xlsm) without requiring Microsoft Excel, including support for charts, pivot tables, data import/export, and professional formatting across Windows, macOS, and Linux.
README
Excel MCP Server - Model Context Protocol for Excel without Microsoft Excel
A Model Context Protocol (MCP) server that lets you manipulate Excel files without needing Microsoft Excel installed. Create, read, write, and analyze Excel workbooks (.xlsx, .xlsm) with AI assistants like Claude. Complete Excel automation through LLM integration.
Key Features:
- ✅ Read and write Excel files without Microsoft Excel
- ✅ Full support for XLSX, XLSM, XLTX, XLTM formats
- ✅ Create charts, pivot tables, and dashboards
- ✅ Import/export CSV, JSON, SQL, PDF
- ✅ Works with Claude AI and other LLM assistants
- ✅ Cross-platform: Windows, macOS, Linux
- ✅ Easy installation via npm/npx
🌟 Features - Excel MCP Server
Complete Excel Manipulation without Microsoft Excel
- 📊 Excel file operations: Read and write XLSX, XLSM, XLTX, XLTM files
- 📖 Data extraction: Read data from Excel sheets with pagination support
- ✍️ Write operations: Write data and formulas to Excel workbooks
- 📋 Sheet management: Create, delete, rename, and copy worksheets
- 📈 Charts and visualizations: Create charts, pivot tables, and dashboards
- 🔄 Data import/export: Import from CSV, JSON, SQL and export to multiple formats
- 🎨 Professional formatting: Automatic styling and formatting for Excel documents
Key Capabilities
📊 Data Operations
- Read and write Excel files with full formatting support
- Create professional tables with automatic styling
- Generate charts and visualizations
- Import from CSV, JSON, and SQL sources
- Export to multiple formats (CSV, JSON, PDF)
🎨 Professional Formatting
- Automatic column width adjustment
- Rich text formatting and styling
- Professional color schemes and themes
- Publication-ready document generation
🏗️ Advanced Features
- Dynamic dashboards with multiple visualizations
- Template-based report generation
- Data filtering and analysis
- Pivot tables and advanced calculations
- Batch processing and automation
🔐 Security & Trust
Security Score: 100/100 | Risk Level: Low
This project has been independently audited by MseeP.ai, providing ongoing security validation and trust assessment for the MCP ecosystem.
🚀 Quick Start - Excel MCP Server Installation
Installation
The easiest way to use Excel MCP Server is with npx (no installation required):
npx @guillehr2/excel-mcp-server@latest
Or install globally:
npm install -g @guillehr2/excel-mcp-server
Configuration
Add to your MCP client configuration (e.g., Claude Desktop):
Using npx (Recommended)
{
"mcpServers": {
"excel-master": {
"command": "npx",
"args": [
"-y",
"@guillehr2/excel-mcp-server@latest"
]
}
}
}
Using specific version
{
"mcpServers": {
"excel-master": {
"command": "npx",
"args": [
"-y",
"@guillehr2/excel-mcp-server@1.0.7"
]
}
}
}
Using global installation
{
"mcpServers": {
"excel-master": {
"command": "excel-mcp-server"
}
}
}
Development mode
If you're developing or want to run from source:
{
"mcpServers": {
"excel-master": {
"command": "node",
"args": ["path/to/Excel-MCP-Server-Master/index.js"]
}
}
}
🛠️ Excel MCP Server Tools - Complete Excel Automation
Excel File Operations without Microsoft Excel
- Create Excel workbooks -
create_workbook_tool - Open Excel files -
open_workbook_tool(XLSX, XLSM, XLTX, XLTM) - Save Excel files -
save_workbook_tool - List Excel sheets -
list_sheets_tool - Manage worksheets -
add_sheet_tool,delete_sheet_tool,rename_sheet_tool
Excel Data Manipulation
- Write to Excel -
write_sheet_data_tool,update_cell_tool - Read from Excel - Built-in data extraction with pagination
- Excel tables -
add_table_tool,create_formatted_table_tool - Excel formulas - Full formula support in all write operations
Excel Charts and Analysis
- Create Excel charts -
add_chart_tool(column, bar, line, pie, scatter) - Excel dashboards -
create_dashboard_tool - Pivot tables - Advanced data analysis
- Data filtering -
filter_data_tool
Import/Export Excel Data
- Import to Excel -
import_data_tool(CSV, JSON, SQL) - Export from Excel -
export_data_tool(CSV, JSON, PDF) - PDF export -
export_single_sheet_pdf_tool,export_sheets_pdf_tool
💡 Usage Examples
Creating a Professional Report
# Create a new workbook with formatted data
result = create_formatted_table_tool(
file_path="sales_report.xlsx",
sheet_name="Q4 Sales",
start_cell="A1",
data=[
["Region", "Q4 Sales", "Growth %"],
["North", 125000, 15.2],
["South", 98000, 8.7],
["East", 156000, 22.1],
["West", 89000, -3.2]
],
table_name="Q4SalesData",
table_style="TableStyleMedium9",
formats={
"B2:B5": "#,##0", # Number format for sales
"C2:C5": "0.0%", # Percentage format
"A1:C1": {"bold": True, "fill_color": "366092"} # Header styling
}
)
# Add a chart based on the table data
chart_result = add_chart_tool(
file_path="sales_report.xlsx",
sheet_name="Q4 Sales",
chart_type="column",
data_range="A1:B5",
title="Q4 Sales by Region",
position="E2",
style="colorful-1"
)
Building a Dynamic Dashboard
# Create a comprehensive dashboard
dashboard_result = create_dashboard_tool(
file_path="executive_dashboard.xlsx",
data={
"Data": [
["Month", "Revenue", "Expenses", "Profit"],
["Jan", 50000, 30000, 20000],
["Feb", 55000, 32000, 23000],
["Mar", 48000, 29000, 19000]
]
},
dashboard_config={
"tables": [
{
"sheet": "Dashboard",
"name": "MonthlyData",
"range": "Data!A1:D4",
"style": "TableStyleMedium9"
}
],
"charts": [
{
"sheet": "Dashboard",
"type": "line",
"data_range": "Data!A1:B4",
"title": "Revenue Trend",
"position": "E1",
"style": "dark-blue"
},
{
"sheet": "Dashboard",
"type": "column",
"data_range": "Data!A1:D4",
"title": "Monthly Comparison",
"position": "E15",
"style": "colorful-2"
}
]
}
)
Data Import and Analysis
# Import data from multiple sources
import_result = import_data_tool(
excel_file="analysis.xlsx",
import_config={
"csv": [
{
"file_path": "sales_data.csv",
"sheet_name": "Sales",
"delimiter": ",",
"encoding": "utf-8"
}
],
"json": [
{
"file_path": "customer_data.json",
"sheet_name": "Customers",
"format": "records"
}
]
},
create_tables=True
)
# Filter and analyze the imported data
filtered_data = filter_data_tool(
file_path="analysis.xlsx",
sheet_name="Sales",
table_name="Table_Sales_1",
filters={
"Region": ["North", "South"],
"Sales": {"gt": 10000}
}
)
🎨 Professional Features
Automatic Formatting
The server automatically applies professional formatting:
- Column width adjustment based on content length
- Row height optimization for wrapped text
- Professional color schemes for charts and tables
- Consistent styling throughout documents
Chart Styling
Extensive chart customization options:
- 50+ predefined styles (light, dark, colorful themes)
- Custom color palettes for brand consistency
- Professional layouts with proper spacing
- Multiple chart types: column, bar, line, pie, scatter, area
Template System
Create reports from templates:
- Reusable templates for consistent reporting
- Dynamic data substitution
- Automatic chart updates
- Format preservation
📋 Requirements
- Node.js 14.0 or higher
- Python 3.8 or higher
- Operating System: Windows, macOS, or Linux
Python dependencies are automatically installed on first run:
- fastmcp
- openpyxl
- pandas
- numpy
- matplotlib
- xlsxwriter
- xlrd
- xlwt
📚 Documentation
For detailed documentation, see:
🤝 Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
Development Setup
# Clone the repository
git clone https://github.com/guillehr2/Excel-MCP-Server-Master.git
cd Excel-MCP-Server-Master
# Install dependencies
npm install
pip install -r requirements.txt
# Run in development mode
node index.js
🐛 Troubleshooting
Common Issues
- Python not found: Ensure Python 3.8+ is installed and in your PATH
- Dependencies fail to install: Try running with administrator privileges
- MCP client doesn't recognize the server: Restart your MCP client after configuration
For more help, see our troubleshooting guide or open an issue.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Built with FastMCP
- Excel manipulation powered by openpyxl
- Data processing with pandas
- Published on npm for easy distribution
- Special thanks to lwsinclair for the independent security audit and MseeP.ai integration
📊 Stats
Made with ❤️ for the MCP ecosystem
If you find this Excel MCP Server useful, please consider giving it a ⭐ on GitHub!
Excel MCP Server by Guillem Hermida | GitHub | NPM | Contact: qtmsuite@gmail.com
Excel manipulation without Microsoft Excel - Model Context Protocol server for Claude AI and LLM integration
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
