Exely Hotel Booking MCP Assistant
Enables hotel booking operations through the Exely Distribution API via natural language interactions. Integrates with LLMs and Telegram bots for seamless hotel search, booking, and management functionality.
README
<p align="right">Read this in other languages: <a href="./README.ru.md">Русский (Russian)</a></p>
Exely Hotel Booking MCP Assistant
A project to integrate the Exely Distribution API with an LLM via an MCP server, allowing interaction through a Telegram bot.
This project is containerized with Docker for easy and reliable deployment in a production environment on any server or VPS.
Key Features
- One-Click Deployment: Use the
deploy.sh(for Linux) ordeploy.ps1(for Windows) scripts for automatic installation and setup. - Interactive Setup: The scripts will prompt you for the necessary API keys and create the configuration files for you.
- Flexible: You can deploy all components on a single machine or split the MCP server and Telegram bot across different servers.
- Production-Ready: Uses a Multistage Docker build to create lightweight and secure images.
- Reliable: Containers are configured to restart automatically in case of failure.
Project structure
exely_mcp_project/
├── app/ # Application source code (FastAPI/MCP server)
│ ├── __init__.py
│ ├── config.py # Application configuration (reads from .env files)
│ ├── main.py # FastAPI entrypoint with the MCP server
│ ├── exely_client/ # Client for the Exely API
│ │ ├── __init__.py
│ │ ├── client.py # The API client itself
│ │ └── schemas.py # Pydantic models for the Exely API
│ ├── llm_client/ # Client for the Mistral LLM API
│ │ ├── __init__.py
│ │ └── llm_client.py
│ └── mcp_tools/ # MCP tools for the LLM
│ ├── __init__.py
│ ├── schemas_llm.py # Pydantic models for tool parameters
│ ├── tools.py # Tool implementation logic
│ └── prompt_utils.py # Utilities for generating prompts
│
├── telegram_bot.py # Telegram bot source code
├── pyproject.toml # Project dependencies and metadata
│
├── README.md # Main documentation (English)
├── README.ru.md # Optional documentation (Russian)
│
│ --- Deployment Files ---
├── deploy.sh # Deployment script for Linux/macOS
├── deploy.ps1 # Deployment script for Windows (PowerShell)
├── Dockerfile # Instructions for building the Docker image
├── .dockerignore # Specifies files to exclude from the image
├── docker-compose.yml # Docker Compose for all-in-one deployment
├── docker-compose.server.yml # For deploying the server only
├── docker-compose.bot.yml # For deploying the bot only
│
│ --- Environment Files (usually not in git) ---
├── .env.prod # (Generated) Production environment variables
├── .env.bot.prod # (Generated) Env vars for a remote bot
└── .env.example # Template for local development (without Docker)
Deployment (Production)
This is the recommended method for running the project on a VPS or any other server.
Prerequisites
- Git to clone the repository.
- Docker and Docker Compose: The deployment script will attempt to automatically install them on Ubuntu systems. For other operating systems, please install them according to the official documentation.
Launch Instructions
-
Clone the repository to your server:
git clone https://github.com/Bdata0/Exely_MCP.git cd ~/Exely_MCP -
Run the deployment script: The script will check for Docker, prompt you for all required API keys and tokens, create the configuration files, and launch the project.
-
For Linux (Ubuntu, Debian, etc.): First, make the script executable:
chmod +x deploy.shThen, run it:
./deploy.sh -
For Windows (using PowerShell): You may need to allow script execution for the current session:
Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope ProcessThen, run the script:
.\deploy.ps1
-
-
Follow the on-screen instructions:
- The script will ask you to enter your
EXELY_API_KEY,MISTRAL_API_KEY, andTELEGRAM_BOT_TOKEN. Input will be hidden for security. - Next, it will prompt you to choose a deployment scenario:
- All-in-one: Run both the server and the bot on the current machine (most common choice).
- Server only: Run only the MCP server.
- Bot only: Run only the Telegram bot (will require the IP address of the server machine).
- The script will ask you to enter your
After selecting a scenario, the script will automatically build the Docker images and start the containers in the background.
Application Management
- Check container status:
docker compose ps - View real-time logs:
docker compose logs -f - Stop the application:
docker compose down
Your bot is now fully configured and running!
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。