exif-mcp
An offline MCP server that allows LLMs or humans to extract and analyze metadata from images using the exifr library, supporting various image formats and metadata segments without external tools.
Tools
read-metadata
Read all or specified metadata segments from an image
read-exif
Read EXIF data from an image with optional tag filtering
read-xmp
Read XMP metadata from an image with option for extended XMP segments
gps-coordinates
Extract GPS coordinates (latitude/longitude) from image metadata
thumbnail
Extract embedded thumbnail from image as base64 data or URL
read-icc
Read ICC metadata from an image
read-iptc
Read IPTC metadata from an image
read-jfif
Read JFIF metadata from an image
read-ihdr
Read IHDR metadata from an image
orientation
Get image orientation value (1-8)
rotation-info
Get detailed rotation and flip information from image orientation
README
exif-mcp
An MCP server that allows LLMs (or humans) to read image metadata on-demand, entirely offline. Based on the excellent exifr library it's exremely fast and does not rely on any external tools.
Usecases:
- Analyze image metadata and visualize it
- Perform analysis of your image library: what are my most used cameras? Lens distribution? Which dates of the week I take most pictures on? Most favorite locations?
- Debugging image manipulation code.
Ths tool is used extensively by the reverse geolocation service PlaceSpotter for development and testing.
Overview
exif-mcp is a Model Context Protocol (MCP) server that provides tools for extracting various metadata segments from images. Built with TypeScript, it leverages the excellent exifr library to parse metadata from images in common formats like JPEG, PNG, TIFF, and HEIC. This allows this service to parse image metadata without executing any external tools which allows it to be both highly efficient and secure.
Features
- Local operation: Works completely offline with no remote network required
- Multiple segments: Extracts EXIF, GPS, XMP, ICC, IPTC, JFIF, and IHDR metadata
- Various input formats: Supports JPEG, TIFF, HEIC/AVIF, and PNG
- Flexible image sources: Read from file system, URLs, base64 data, or buffers
- Specialized tools: Get orientation, rotation info, GPS coordinates, and thumbnails
Installation
# Clone the repository
git clone https://github.com/stass/exif-mcp.git
cd exif-mcp
# Install dependencies
npm install
# Build the project
npm run build
Usage
Claude Desktop
Put this into Claude config file (claude_desktop_config.json):
"mcpServers": {
"exif-mcp": {
"command": "node",
"args": [
"/path/to/exif-mcp/dist/server.js"
]
}
},
Restart Claude. Now you can ask Claude to inspect images for you or e.g. find files taken with specific camera. This works best in combination with filesystem MCP tools so Claude can find files and list directories.
Starting the server
# Start the server
npm start
# For development with auto-reload
npm run dev
The server uses the StdioServerTransport from the MCP SDK, making it compatible with any MCP client that supports STDIO transport.
You can use mcp-proxy to enable remote access.
Available Tools
The following tools are provided by the server:
| Tool name | Description |
|---|---|
read-metadata |
Reads all or specified metadata segments |
read-exif |
Reads EXIF data specifically |
read-xmp |
Reads XMP data |
read-icc |
Reads ICC color profile data |
read-iptc |
Reads IPTC metadata |
read-jfif |
Reads JFIF segment data |
read-ihdr |
Reads IHDR segment data |
orientation |
Gets image orientation (1-8) |
rotation-info |
Gets rotation and flip information |
gps-coordinates |
Extracts GPS coordinates |
thumbnail |
Extracts embedded thumbnail |
Debugging with MCP Inspector
- Start the inspector:
npx @modelcontextprotocol/inspector node dist/server.js - Connect to it with MCP Inspector using the STDIO transport
- Call a tool, e.g.,
read-metadatawith parameter:{ "image": { "kind": "path", "path": "/path/to/image.jpg" } } - You cal also use MCP inspector command line like this:
npx @modelcontextprotocol/inspector --cli node dist/server.js --method tools/call --tool-name read-exif --tool-arg image='{"kind": "path", "path": "/path/to/image.jpeg"}' --tool-arg pick="[]"
Image Source Types
The server supports multiple ways to provide image data:
// From local file system
{
"kind": "path",
"path": "/path/to/image.jpg"
}
// From URL (http, https, or file://)
{
"kind": "url",
"url": "https://example.com/image.jpg"
}
// From base64 data (raw or data URI)
{
"kind": "base64",
"data": "..."
}
// From base64 buffer
{
"kind": "buffer",
"buffer": "/9j/4AAQSkZ..."
}
Development
Running Tests
# Run tests
npm test
# Run tests with watch mode
npm run test:watch
Project Structure
exif-mcp/
├── src/
│ ├── server.ts # Main entry point
│ ├── tools/
│ │ ├── index.ts # Tool registration
│ │ ├── loaders.ts # Image loading utilities
│ │ └── segments.ts # exifr options builders
│ └── types/
│ └── image.ts # Type definitions
├── tests/ # Test files
└── README.md
Error Handling
The server provides standardized error handling for common issues:
- Unsupported formats or missing metadata
- Network fetch failures
- Oversized payloads
- Internal exifr errors
License
BSD 2-clause
Acknowledgements
- exifr - Extremely fast and robust EXIF parsing library
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。