Expense Tracker MCP Server

Expense Tracker MCP Server

Enables AI assistants to manage personal expenses through natural conversation, supporting expense tracking, categorization, filtering, and financial summaries. Uses SQLite database to store expense records with full CRUD operations for comprehensive personal finance management.

Category
访问服务器

README

Expense Tracker MCP Server

A Model Context Protocol (MCP) server that enables AI assistants like Claude to manage your personal expenses through natural conversation. Built with Python using fastmcp and uv.

Features

  • Add Expenses: Record expenses with amount, category, date, and description
  • List & Filter: View expenses by category and date range
  • Summarize: Get spending summaries grouped by category
  • Update Expenses: Modify existing expense records
  • Delete Expenses: Remove unwanted expense entries
  • Natural Language Interface: Interact with your expense data conversationally through Claude

Prerequisites

  • Python 3.10 or higher
  • uv package manager

Installation

# Clone the repository
git clone https://github.com/Khushi-c-sharma/expense-tracker-mcp-server.git
cd expense-tracker-mcp-server

# Install uv if you haven't already
curl -LsSf https://astral.sh/uv/install.sh | sh

# Install dependencies
uv sync

Configuration

Add the server to your Claude Desktop configuration file:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json

Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "expense-tracker": {
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/expense-tracker-mcp",
        "run",
        "expense-tracker"
      ]
    }
  }
}

Usage Examples

Once configured, you can interact with your expenses through Claude naturally:

You: "Add expense 2632 spent yesterday for shopping dress for my convocation"
Claude: *Adds the expense with proper categorization*

You: "Show me all my expenses this month"
Claude: *Lists and summarizes your monthly expenses*

You: "How much did I spend on food in September?"
Claude: *Provides category-specific spending summary*

Available Tools

add_expense

Add a new expense to the database.

  • Parameters: amount (required), category (required), date, description, subcategory

list_expenses

List expenses filtered by category and optional date range.

  • Parameters: category, start_date, end_date

summarize

Get total expenses by category within a date range.

  • Parameters: start_date (required), end_date (required), category

update_expense

Update an existing expense.

  • Parameters: expense_id (required), amount, category, date, description, subcategory

delete_expense

Delete an expense by ID.

  • Parameters: expense_id (required)

Database

Expenses are stored in a local SQLite database (expenses.db) with the following schema:

CREATE TABLE expenses (
  id INTEGER PRIMARY KEY AUTOINCREMENT,
  amount REAL NOT NULL,
  category TEXT NOT NULL,
  subcategory TEXT,
  date TEXT NOT NULL,
  description TEXT
);

Development

# Run the server directly
uv run expense-tracker

# Run in development mode with auto-reload
uv run python src/expense_tracker/server.py

# Install new dependencies
uv add package-name

# Update dependencies
uv sync

Project Structure

expense-tracker-mcp/
├── main.py                     # Main MCP server code
├── pyproject.toml              # Project configuration
├── uv.lock                     # Locked dependencies
├── expenses.db                 # SQLite database (created on first run)
└── README.md

Use Cases

  • Personal Finance Tracking: Monitor daily spending habits
  • Budget Management: Track expenses by category to stay within budget
  • Expense Reports: Generate summaries for tax purposes or reimbursements
  • Shopping Tracking: Keep records of purchases and major expenses
  • Financial Analysis: Analyze spending patterns over time

Built With

  • fastmcp - Fast, Pythonic MCP server framework
  • uv - Fast Python package installer and resolver
  • SQLite - Lightweight database for expense storage
  • Model Context Protocol - Protocol for AI-application integration

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Troubleshooting

Server not appearing in Claude Desktop?

  • Ensure the path in claude_desktop_config.json is absolute and correct
  • Restart Claude Desktop after configuration changes
  • Check Claude Desktop logs for error messages

Database errors?

  • Ensure the directory is writable
  • Delete expenses.db to recreate the database from scratch

Support

If you encounter any issues or have questions, please open an issue on GitHub.


Made with ❤️ for better expense tracking through AI

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选