Expense Tracker MCP Server

Expense Tracker MCP Server

Parses PDF receipts to extract grocery and shopping expenses, automatically categorizes items using smart rules and LLM fallback, and stores them in a local SQLite database for querying purchase history and spending patterns.

Category
访问服务器

README

Expense Tracker MCP Server

A local Model Context Protocol (MCP) server that helps you track grocery and shopping expenses by parsing PDF receipts, automatically categorizing items, and storing them in a SQLite database for easy querying.

Features

  • PDF Receipt Parsing: Extract line items, prices, and metadata from PDF receipts
  • Smart Categorization: Hybrid approach using static rules + LLM fallback for item classification
  • SQLite Storage: Persistent local database for all your expense data
  • Query Tools: Ask questions like "When did I last buy milk?" or "How often do I buy bread?"
  • Multi-Store Support: Works with receipts from Walmart, Costco, Target, and more

Installation

Prerequisites

  • Python 3.11 or higher
  • uv (recommended) or pip

Step 1: Clone or Download

cd /Users/sharan/Desktop/expense_tracker_mcp

Step 2: Install Dependencies

Using uv (recommended):

uv sync

Using pip:

pip install -r requirements.txt

Step 3: Initialize Database

The database is automatically initialized when you first run the server. The SQLite database will be created at data/expenses.db.

Running Locally

To test the server locally:

python main.py

or with uv:

uv run main.py

The server will start and listen on stdin/stdout (MCP protocol).

Connecting to Claude Desktop

Step 1: Locate Claude Desktop Config

The configuration file is located at:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%/Claude/claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json

Step 2: Add MCP Server Configuration

Edit the config file and add this entry to mcpServers:

{
  "mcpServers": {
    "expense-tracker": {
      "command": "uv",
      "args": [
        "--directory",
        "/Users/sharan/Desktop/expense_tracker_mcp",
        "run",
        "main.py"
      ]
    }
  }
}

Alternative (using python directly):

{
  "mcpServers": {
    "expense-tracker": {
      "command": "/Users/sharan/Desktop/expense_tracker_mcp/.venv/bin/python",
      "args": [
        "/Users/sharan/Desktop/expense_tracker_mcp/main.py"
      ]
    }
  }
}

Step 3: Restart Claude Desktop

After saving the config, restart Claude Desktop to load the MCP server.

Usage

Once connected to Claude Desktop, you can use these tools:

1. Import a Receipt

Upload a PDF receipt and the server will parse it:

Import this receipt: /path/to/walmart_receipt.pdf

Example Response:

{
  "status": "success",
  "receipt_id": 1,
  "store_name": "Walmart",
  "purchase_date": "2025-01-15",
  "total": 45.67,
  "items_count": 12,
  "item_types": {
    "milk": 1,
    "bread": 1,
    "eggs": 1,
    "veggies": 3,
    "snacks": 2,
    "beverages": 2,
    "meat": 2
  }
}

2. Query Item History

Ask when you last bought something:

When did I last buy milk?

or

Show me all my milk purchases in the last 6 months

Example Response:

{
  "item_type": "milk",
  "purchases": [
    {
      "date": "2025-01-15",
      "store": "Walmart",
      "item_name": "Organic Milk 2%",
      "quantity": 1.0,
      "price": 4.99
    },
    {
      "date": "2024-12-28",
      "store": "Costco",
      "item_name": "Kirkland Milk",
      "quantity": 2.0,
      "price": 6.99
    }
  ],
  "stats": {
    "total_purchases": 2,
    "last_purchase_date": "2025-01-15",
    "first_purchase_date": "2024-12-28",
    "average_days_between": 18.0,
    "total_spent": 11.98
  }
}

3. List All Categories

See all item types you've purchased:

What categories of items have I bought?

Example Response:

{
  "item_types": [
    {
      "item_type": "milk",
      "total_purchases": 12,
      "last_purchase_date": "2025-01-15",
      "total_spent": 59.88
    },
    {
      "item_type": "bread",
      "total_purchases": 8,
      "last_purchase_date": "2025-01-10",
      "total_spent": 27.92
    }
  ],
  "total_categories": 15
}

Supported Item Categories

The categorizer recognizes these item types out of the box:

Dairy: milk, oatmilk, eggs, cheese, yogurt, butter

Grains: bread, rice, lentils, pasta, cereal

Produce: veggies, fruits, potatoes

Proteins: meat, fish

Snacks & Beverages: snacks, beverages

Pantry: oil, spices, sauce

Household: cleaning, paper

Fallback: other (for unrecognized items)

Adding New Categories

Edit expense_tracker/categorizer.py and add patterns to the ITEM_TYPE_MAPPINGS dictionary:

ITEM_TYPE_MAPPINGS = {
    # ... existing categories ...
    "tofu": ["tofu", "bean curd", "soy protein"],
}

Database Schema

The SQLite database (data/expenses.db) contains two main tables:

receipts

  • id: Auto-increment primary key
  • store_name: Store name (e.g., "Walmart")
  • purchase_date: ISO format date (YYYY-MM-DD)
  • subtotal: Subtotal amount (nullable)
  • tax: Tax amount (nullable)
  • total: Total amount (required)
  • created_at: Timestamp

items

  • id: Auto-increment primary key
  • receipt_id: Foreign key to receipts table
  • item_name_raw: Original item name from receipt
  • item_type: Normalized category
  • quantity: Item quantity (default: 1.0)
  • unit_price: Price per unit (nullable)
  • line_total: Total price for this line
  • created_at: Timestamp

How It Works

1. PDF Parsing

Uses pdfplumber to extract text from PDF files, then applies regex patterns to identify:

  • Store name (Walmart, Costco, Target, etc.)
  • Purchase date (multiple date formats supported)
  • Line items with quantities and prices
  • Totals (subtotal, tax, total)

2. Item Categorization

Hybrid approach:

  1. Static Rules (fast, deterministic)

    • Checks item name against pre-defined patterns
    • Handles common grocery items with keyword matching
    • ~90% accuracy for typical grocery items
  2. LLM Fallback (smart, adaptive)

    • Uses Claude via FastMCP's Context.sample() for unknown items
    • Provides better accuracy for unusual or new items
    • Automatically adapts to items not in static mappings

3. Database Storage

All data is stored in a local SQLite database with proper indexing for fast queries:

  • Indexes on purchase_date, store_name, item_type
  • Foreign key constraints for data integrity
  • Support for aggregate queries and statistics

Troubleshooting

Server not appearing in Claude Desktop

  1. Check that the path in claude_desktop_config.json is correct
  2. Restart Claude Desktop completely
  3. Check Claude Desktop logs for errors

PDF parsing errors

  • Ensure the PDF is text-based (not a scanned image)
  • Try opening the PDF in a viewer to verify it contains selectable text
  • Check that the file path is absolute, not relative

Database locked errors

  • Close any other tools accessing data/expenses.db
  • Make sure only one instance of the server is running

Development

Running Tests

pytest tests/

Adding New Features

The modular architecture makes it easy to extend:

  • New categorization rules: Edit expense_tracker/categorizer.py
  • New receipt formats: Update patterns in expense_tracker/pdf_parser.py
  • New MCP tools: Add tool functions to main.py with @mcp.tool decorator
  • Database changes: Modify schema in expense_tracker/database.py

License

MIT License - feel free to use and modify for your needs.

Contributing

Contributions welcome! Areas for improvement:

  • Support for more receipt formats
  • Better item categorization rules
  • Export to CSV/Excel functionality
  • Visualization dashboards
  • Multi-user support

Support

For issues or questions:


Built with FastMCP - The fast, Pythonic way to build MCP servers

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选