ExpenseTracker MCP Server
Enables AI assistants to manage personal finances by storing, analyzing, and exporting expense data using a persistent PostgreSQL database. Supports adding/editing expenses, generating spending summaries, detecting top categories, and creating monthly reports.
README
ExpenseTracker MCP Server
A production-ready Model Context Protocol (MCP) server that turns your AI assistant into a persistent personal finance manager using PostgreSQL.
This project allows Claude Desktop or any MCP-enabled agent to securely store, analyze, and export expense data using real database transactions instead of chat memory.
What Is It?
ExpenseTracker MCP is a local backend service exposing structured financial tools to AI agents.
It enables your assistant to:
- Store expenses permanently
- Edit and delete past records
- Summarize spending patterns
- Detect top spending categories
- Generate monthly reports
- Export data for accounting or tax use
How It Works
- Claude Desktop sends a tool request using MCP.
- ExpenseTracker MCP receives the request.
- The server executes the database operation in PostgreSQL.
- Results are returned to Claude as structured JSON.
- Logs are written to
expense_tracker.log.
The AI never invents data — it only queries your real database.
How To Run Using uv
Install dependencies
uv add fastmcp psycopg2-binary python-dotenv
Create .env file
DB_HOST=localhost
DB_PORT=5432
DB_NAME=expense_tracker
DB_USER=expense_user
DB_PASSWORD=your_password
Start MCP server
For Testing
uv run fastmcp dev main.py
For Run
uv run fastmcp run main.py
How to connect to Claude Desktop
uv run fastmcp install claude-desktop main.py
Restart Claude Desktop
Contribution
Contributions are welcome.
- Fork the repository
- Create a feature branch
- Add or improve MCP tools or documentation
- Submit a pull request with a clear description of your changes
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。