Facebook Insights Metrics v23

Facebook Insights Metrics v23

Provides access to 120+ Facebook Graph API v23.0 Insights metrics through MCP tools and resources. Features intelligent fuzzy search capabilities and real-time metric discovery for comprehensive Facebook analytics data.

Category
访问服务器

README

Facebook Insights Metrics v23 MCP Server

npm version License: MIT Node.js Version

A comprehensive Model Context Protocol (MCP) server that exposes Facebook Graph API v23.0 Insights metrics to any LLM via MCP tools and resources. This server provides access to 120+ Facebook metrics with intelligent search capabilities and real-time data updates.

Table of Contents

Features

  • Complete Metrics Coverage: 121+ Facebook Graph API v23.0 Insights metrics
  • Fast Fuzzy Search: Powered by Fuse.js for intelligent metric discovery
  • Dynamic Updates: Parse and refresh metrics from Markdown reference
  • Type Safety: Full TypeScript support with Zod validation
  • MCP Compatible: Works with any MCP-compatible LLM client

Quick Start

Prerequisites

  • Node.js v22.0.0 or higher
  • npm or yarn
  • An MCP-compatible client (Claude Desktop, Cline, etc.)

Installation

Option 1: NPM (Recommended)

# Install globally
npm install -g facebook-insights-metrics-v23

# Or install locally
npm install facebook-insights-metrics-v23

Option 2: From Source

# Clone the repository
git clone https://github.com/KarimTarekDev/facebook-insights-metrics-v23.git
cd facebook-insights-metrics-v23

# Install dependencies
npm install

# Build the project
npm run build

# Generate initial metrics data
npm run refresh

Configuration

MCP Client Configuration

Add the server to your MCP client configuration:

Claude Desktop (claude_desktop_config.json)

{
  "mcpServers": {
    "facebook-insights-metrics-v23": {
      "command": "node",
      "args": ["/path/to/facebook-insights-metrics-v23/dist/server.js"]
    }
  }
}

Cline

{
  "mcpServers": {
    "facebook-insights-metrics-v23": {
      "command": "node",
      "args": ["/path/to/facebook-insights-metrics-v23/dist/server.js"]
    }
  }
}

Environment Variables

  • METRICS_DATA_PATH: Custom path to metrics.json file (optional)
  • DEBUG: Enable debug logging (optional)

Quick Fix for "No parameters" Error

If you're getting "No parameters" error, run this:

# Complete setup and test
npm install && npm run build && npm run refresh && npm run test

Running the Server

# Development mode (with auto-reload)
npm run dev

# Production mode
npm run build
npm start

# Force rebuild from Markdown
npm run dev -- --rebuild

MCP Tools

The server provides the following MCP tools:

metrics.list

Returns a list of all metrics with basic information.

Response:

[
  {
    "name": "page_impressions_unique",
    "level": "page",
    "periods": ["day", "week", "days_28"],
    "dataType": "Integer",
    "deprecated": false
  }
]

metrics.get

Returns full details of a specific metric by exact name.

Parameters:

  • name (string): The exact name of the metric

Response:

{
  "name": "page_impressions_unique",
  "level": "page",
  "description": "Number of people who had Page content enter their screen",
  "periods": ["day", "week", "days_28"],
  "dataType": "Integer",
  "notes": "Estimated metric",
  "tags": ["impressions", "unique"],
  "deprecated": false
}

metrics.search

Performs fuzzy search over metrics by name, description, or tags.

Parameters:

  • q (string): Search query
  • limit (number, optional): Maximum number of results (default: 20)

Response:

[
  {
    "item": {
      "name": "page_impressions_unique",
      "level": "page",
      "description": "Number of people who had Page content enter their screen",
      "periods": ["day", "week", "days_28"],
      "dataType": "Integer",
      "notes": "Estimated metric",
      "tags": ["impressions", "unique"],
      "deprecated": false
    },
    "score": 0.1,
    "matches": [...]
  }
]

metrics.refreshNow

Re-parses the Markdown reference file and reloads the in-memory cache.

Response:

{
  "content": [
    {
      "type": "text",
      "text": "Metrics refreshed successfully"
    }
  ]
}

MCP Resources

mcp://facebook-insights-metrics-v23/metrics.json

Complete JSON data of all Facebook Graph API v23.0 Insights metrics.

Content Type: application/json

Response:

{
  "version": "v23.0.2025-09-19",
  "updatedAt": "2025-09-19T12:00:00.000Z",
  "metrics": [
    {
      "name": "page_impressions_unique",
      "level": "page",
      "description": "Number of people who had Page content enter their screen",
      "periods": ["day", "week", "days_28"],
      "dataType": "Integer",
      "notes": "Estimated metric",
      "tags": ["impressions", "unique"],
      "deprecated": false
    }
    // ... 120+ more metrics
  ]
}

Metrics Categories

Page-Level Metrics (59 metrics)

  • Page Content & Tab: Tab views and content metrics
  • Page CTA & Actions: Call-to-action interactions
  • Page Engagement: Follows, unfollows, and engagement metrics
  • Page Impressions: Reach and impression tracking
  • Page Posts Impressions: Post-specific reach metrics
  • Page Video Performance: Video views and completion rates
  • Page Fan/Demographics: Follower demographics and growth
  • Page Content & Views: Profile page visits
  • Page Stories & Activity: Story creation and activity metrics

Post-Level Metrics (33 metrics)

  • Post Impressions: Post reach and visibility
  • Post Engagement & Activity: Post interactions and clicks
  • Post Reactions: Individual reaction counts
  • Post Video Performance: Post-specific video metrics

Video Metrics (26 metrics)

  • Video views, completion rates, and retention
  • Demographic breakdowns by age, gender, and location
  • Attribution tracking (paid vs organic)

Monetization Metrics (3 metrics)

  • Content monetization earnings
  • Revenue tracking and estimates

Data Types

  • Integer: Counts, totals, and whole numbers
  • Float: Earnings, rates, and decimal values
  • JSON: Complex objects with breakdowns (demographics, attribution)
  • String: Text-based data

Supported Periods

  • day: Daily data points
  • week: Weekly aggregated data
  • days_28: 28-day rolling periods
  • month: Monthly data
  • lifetime: All-time totals since Page creation

CLI Options

# Force rebuild from Markdown
facebook-insights-metrics-v23 --rebuild

# Override metrics.json location
facebook-insights-metrics-v23 --data /path/to/metrics.json

Development

Project Structure

facebook-insights-metrics-v23/
├── package.json              # Project configuration
├── mcp.json                  # MCP server configuration
├── tsconfig.json             # TypeScript configuration
├── src/
│   ├── server.ts             # MCP server implementation
│   ├── schema.ts             # Zod schemas and types
│   ├── loader.ts             # Metrics data loader
│   ├── search.ts             # Fuzzy search implementation
│   ├── parser.ts             # Markdown parser
│   └── data/
│       └── metrics.json      # Generated metrics data
├── scripts/
│   └── refresh.ts            # Refresh script
└── FACEBOOK_API_V23_METRICS_REFERENCE.md  # Source markdown

Available Scripts

# Development
npm run dev          # Start server in development mode
npm run build        # Build TypeScript to JavaScript
npm run refresh      # Parse Markdown and update metrics.json

# Production
npm start            # Start built server

Adding New Metrics

  1. Update the FACEBOOK_API_V23_METRICS_REFERENCE.md file
  2. Run npm run refresh to parse and update metrics
  3. The server will automatically reload with new metrics

Customization

  • Search Threshold: Modify threshold in src/search.ts (default: 0.35)
  • Data Path: Set METRICS_DATA_PATH environment variable
  • Tags: Customize tag extraction in src/schema.ts

API Reference

Facebook Graph API v23.0

This MCP server is based on the official Facebook Graph API v23.0 Insights documentation. All metrics are sourced from the comprehensive reference document and include:

  • Complete metric definitions
  • Supported time periods
  • Data types and formats
  • Deprecation status
  • Usage notes and limitations

Rate Limits

  • MCP Server: No built-in rate limiting
  • Facebook API: 200 calls per hour per app (when used with actual API)
  • Search: Optimized with Fuse.js for fast local searches

Troubleshooting

Common Issues

  1. "No parameters" error: This is the most common issue. Follow these steps:

    # 1. Ensure proper installation
    npm install
    npm run build
    npm run refresh
    
    # 2. Test the server
    npm run test
    
    # 3. Use correct mcp.json configuration
    

    Correct mcp.json:

    {
      "mcpServers": {
        "facebook-insights-metrics-v23": {
          "command": "node",
          "args": ["/full/path/to/facebook-insights-metrics-v23/dist/server.js"]
        }
      }
    }
    
  2. No metrics found: Run npm run refresh to generate metrics.json

  3. Build errors: Ensure Node.js v22+ and run npm install

  4. Search not working: Check that metrics.json exists and is valid

Debug Mode

# Enable debug logging
DEBUG=* npm run dev

Development

Project Structure

facebook-insights-metrics-v23/
├── src/                          # TypeScript source code
│   ├── server.ts                 # MCP server implementation
│   ├── schema.ts                 # Zod schemas and types
│   ├── loader.ts                 # Metrics data loader
│   ├── search.ts                 # Fuzzy search implementation
│   ├── parser.ts                 # Markdown parser
│   └── data/
│       └── metrics.json          # Generated metrics data
├── scripts/
│   └── refresh.ts                # Refresh script
├── .github/                      # GitHub templates
├── dist/                         # Compiled JavaScript
├── FACEBOOK_API_V23_METRICS_REFERENCE.md  # Source markdown
└── test-mcp.js                   # Test script

Available Scripts

npm run dev          # Start development server
npm run build        # Build TypeScript to JavaScript
npm run refresh      # Parse Markdown and update metrics.json
npm start            # Start production server
npm test             # Run MCP server tests
npm run test:quick   # Quick MCP test

Adding New Metrics

  1. Update FACEBOOK_API_V23_METRICS_REFERENCE.md with new metrics
  2. Run npm run refresh to parse and update metrics
  3. Test the new metrics with npm test

Contributing

We welcome contributions! Please see our Contributing Guide for details.

Quick Start for Contributors

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes
  4. Run tests: npm test
  5. Commit your changes: git commit -m 'Add amazing feature'
  6. Push to the branch: git push origin feature/amazing-feature
  7. Open a Pull Request

Support

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • Facebook Graph API team for the comprehensive metrics documentation
  • Model Context Protocol team for the MCP specification
  • All contributors who help improve this project

Version: 1.0.0
Node.js: v22.0.0+
Facebook API: v23.0
Last Updated: September 19, 2025

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选