Factifai MCP Server
Integrates Factifai testing capabilities with MCP-compatible AI tools, enabling asynchronous creation and retrieval of automated tests using AI models from OpenAI or AWS Bedrock.
README
Factifai MCP Server
<img alt="Install in VS Code (npx)" src="https://img.shields.io/badge/VS_Code-VS_Code?style=plastic&label=Install&color=0098FF">
<img alt="Install in VS Code Insiders (npx)" src="https://img.shields.io/badge/VS_Code_Insiders-VS_Code_Insiders?style=plastic&label=Install&color=24bfa5">
<img alt="Install in Cursor (npx)" src="https://img.shields.io/badge/Cursor-Cursor?style=plastic&label=Install&color=1A1A1A">
<p> <img style="margin-right:18px;" src="assets/img/hai.png" alt="Hai Build" /> <img style="margin-right:18px;" src="assets/img/amazon-q.png" alt="Amazon Q" /> <img style="margin-right:18px;" src="assets/img/vsc.png" alt="VS Code" /> <img style="margin-right:18px;" src="assets/img/cursor.png" alt="Cursor" /> <img style="margin-right:18px;" src="assets/img/windsurf.png" alt="Windsurf" /> <img style="margin-right:18px;" src="assets/img/zed.png" alt="Zed" /> </p>
A Model Context Protocol (MCP) server for Factifai integration with any MCP-compatible AI tool. This server is designed to be tool-agnostic, meaning it can be used with any tool that supports the MCP protocol. This server currently exposes tools to create tests asynchronously and get the result of the test.
Table of Contents
- Factifai MCP Server
Requirements
- Node.js >= 16.0.0
- Hai Build, Cursor, Windsurf, Claude Desktop or any MCP Client
Installation
# Latest version
npx --yes @presidio-dev/factifai-mcp-server@latest
# Specific version
npx --yes @presidio-dev/factifai-mcp-server@1.2.3
We recommend npx to install the server, but you can use any node package manager of your preference such as yarn, pnpm, bun, etc.
Installation Note
⚠️ Important: The first time you install Factifai MCP Server, it will automatically download and install browser dependencies using Playwright. This process may take several minutes depending on your internet connection and system specifications.
The installation includes:
- Downloading browser binaries (Chromium, Firefox, WebKit)
- Installing browser dependencies
- Setting up the necessary environment
This happens only once, and subsequent runs will be much faster as the browsers are already installed.
Pre-Installation Tip
⚠️ Recommended for First-Time Installation: Many MCP clients have strict timeout limits for server startup. The browser installation process during first-time setup may exceed these timeouts, causing the installation to fail or appear non-responsive.
To avoid timeout issues, we strongly recommend pre-installing Playwright browsers manually:
# Step 1: Install Playwright browsers manually before installing the MCP server
npx playwright install --with-deps
# Step 2: Then install the MCP server (will be much faster and avoid timeouts)
npx --yes @presidio-dev/factifai-mcp-server@latest
This pre-installation step:
- Ensures browsers are downloaded without MCP client timeout constraints
- Significantly speeds up the MCP server's first-time installation
- Prevents installation failures due to timeout issues in your IDE or MCP client
Configuration
with npx with latest version:
{
"factifai": {
"command": "npx",
"args": ["--yes", "@presidio-dev/factifai-mcp-server@latest"],
"env": {
"MODEL_PROVIDER": "bedrock|openai",
"OPENAI_API_KEY": "<your-openai-api-key>",
"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
"AWS_DEFAULT_REGION": "<your-aws-region>"
},
"disabled": false,
"autoApprove": []
}
}
with npx with specific version:
{
"factifai": {
"command": "npx",
"args": ["--yes", "@presidio-dev/factifai-mcp-server@1.2.3"],
"env": {
"MODEL_PROVIDER": "bedrock|openai",
"OPENAI_API_KEY": "<your-openai-api-key>",
"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
"AWS_DEFAULT_REGION": "<your-aws-region>"
},
"disabled": false,
"autoApprove": []
}
}
Environment Variables
| Variable Name | Description |
|---|---|
MODEL_PROVIDER |
The model provider to use. (bedrock or openai) |
OPENAI_API_KEY |
The API key for the OpenAI model provider |
AWS_ACCESS_KEY_ID |
The AWS access key ID for the Bedrock model provider |
AWS_SECRET_ACCESS_KEY |
The AWS secret access key for the Bedrock model provider |
AWS_DEFAULT_REGION |
The AWS default region for the Bedrock model provider |
Model Provider Configuration Examples
Bedrock Configuration Example
{
"factifai": {
"command": "npx",
"args": ["--yes", "@presidio-dev/factifai-mcp-server@latest"],
"env": {
"MODEL_PROVIDER": "bedrock",
"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
"AWS_DEFAULT_REGION": "<your-aws-region>"
},
"disabled": false,
"autoApprove": []
}
}
OpenAI Configuration Example
{
"factifai": {
"command": "npx",
"args": ["--yes", "@presidio-dev/factifai-mcp-server@latest"],
"env": {
"MODEL_PROVIDER": "openai",
"OPENAI_API_KEY": "<your-openai-api-key>"
},
"disabled": false,
"autoApprove": []
}
}
Factifai MCP integration with popular IDE and extension
See the setup instructions for each
<details>
<summary><b>Install in Hai Build</b></summary>
Add the following to your hai_mcp_settings.json file. To open this file from Hai Build, click the "MCP Servers" icon, select the "Installed" tab, and then click "Configure MCP Servers".
See the Hai Build MCP documentation for more info.
{
"mcpServers": {
"factifai": {
"command": "npx",
"args": ["-y", "@presidio-dev/factifai-mcp-server@latest"],
"env": {
"MODEL_PROVIDER": "bedrock|openai",
"OPENAI_API_KEY": "<your-openai-api-key>",
"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
"AWS_DEFAULT_REGION": "<your-aws-region>"
}
}
}
}
</details>
<details>
<summary><b>Install in Amazon Q Developer</b></summary>
Add the following to your Amazon Q Developer configuration file. See MCP configuration for Q Developer in the IDE for more details.
The configuration file can be stored globally at ~/.aws/amazonq/mcp.json to be available across all your projects, or locally within your project at .amazonq/mcp.json.
{
"mcpServers": {
"factifai": {
"command": "npx",
"args": ["-y", "@presidio-dev/factifai-mcp-server@latest"],
"env": {
"MODEL_PROVIDER": "bedrock|openai",
"OPENAI_API_KEY": "<your-openai-api-key>",
"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
"AWS_DEFAULT_REGION": "<your-aws-region>"
}
}
}
}
</details>
<details>
<summary><b>Install in VS Code (Copilot)</b></summary>
<img alt="Install in VS Code (npx)" src="https://img.shields.io/badge/VS_Code-VS_Code?style=plastic&label=Install&color=0098FF"> <img alt="Install in VS Code Insiders (npx)" src="https://img.shields.io/badge/VS_Code_Insiders-VS_Code_Insiders?style=plastic&label=Install&color=24bfa5">
First, enable MCP support in VS Code by opening Settings (Ctrl+,), searching for mcp.enabled, and checking the box.
Then, add the following configuration to your user or workspace settings.json file. See the VS Code MCP documentation for more info.
"mcp": {
"servers": {
"factifai": {
"type": "stdio",
"command": "npx",
"args": ["-y", "@presidio-dev/factifai-mcp-server@latest"],
"env": {
"MODEL_PROVIDER": "bedrock|openai",
"OPENAI_API_KEY": "<your-openai-api-key>",
"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
"AWS_DEFAULT_REGION": "<your-aws-region>"
}
}
}
}
</details>
<details> <summary><b>Install in Cursor</b></summary>
The easiest way to install is with the one-click installation button below.
Alternatively, you can manually configure the server by adding the following to your mcp.json file. This file can be located globally at ~/.cursor/mcp.json or within a specific project at .cursor/mcp.json. See the Cursor MCP documentation for more information.
{
"mcpServers": {
"factifai": {
"command": "npx",
"args": ["--yes", "@presidio-dev/factifai-mcp-server@latest"],
"env": {
"MODEL_PROVIDER": "bedrock|openai",
"OPENAI_API_KEY": "<your-openai-api-key>",
"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
"AWS_DEFAULT_REGION": "<your-aws-region>"
}
}
}
}
</details>
<details> <summary><b>Install in Windsurf</b></summary>
Add the following to your ~/.codeium/windsurf/mcp_config.json file. See the Windsurf MCP documentation for more information.
{
"mcpServers": {
"factifai": {
"command": "npx",
"args": ["-y", "@presidio-dev/factifai-mcp-server@latest"],
"env": {
"MODEL_PROVIDER": "bedrock|openai",
"OPENAI_API_KEY": "<your-openai-api-key>",
"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
"AWS_DEFAULT_REGION": "<your-aws-region>"
}
}
}
}
</details>
<details> <summary><b>Install in Zed</b></summary>
You can add the Factifai MCP server in Zed by editing your settings.json file (accessible via the zed: settings action) or by using the Agent Panel's configuration UI (agent: open configuration). See the Zed MCP documentation for more information.
Add the following to your settings.json:
{
"context_servers": {
"factifai": {
"command": {
"path": "npx",
"args": ["-y", "@presidio-dev/factifai-mcp-server@latest"],
"env": {
"MODEL_PROVIDER": "bedrock|openai",
"OPENAI_API_KEY": "<your-openai-api-key>",
"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
"AWS_DEFAULT_REGION": "<your-aws-region>"
}
}
}
}
}
</details>
Available Tools
| Tool Name | Description |
|---|---|
testWithFactifai |
Start a test with Factifai |
getFactifaiSessionResult |
Get test result |
listFactifaiSessions |
List tests |
Contributing
We welcome contributions to the Factifai MCP Server! Please see our Contributing Guide for more information on how to get started.
Security
For information about our security policy and how to report security vulnerabilities, please see our Security Policy.
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。