fal-ai Ideogram V3 MCP Server
Enables high-quality AI image generation with superior text rendering using the fal-ai/ideogram/v3 model. Supports advanced style control, custom dimensions, color palettes, reference images, and queue-based generation with automatic local image downloads.
README
fal-ai/ideogram/v3 MCP Server
A Model Context Protocol (MCP) server that provides access to the fal-ai/ideogram/v3 image generation model. This server allows you to generate high-quality images with superior text rendering capabilities using advanced AI technology through the fal.ai platform.
Features
- High-Quality Image Generation: Generate stunning images using the fal-ai/ideogram/v3 model
- Superior Text Rendering: Advanced text-to-image generation with excellent text quality
- Multiple Generation Methods: Support for synchronous and queue-based generation
- Flexible Image Sizing: Support for predefined sizes and custom dimensions
- Advanced Style Control: Style presets, style codes, and color palettes
- Style Reference Images: Use reference images to guide the generation style
- Local Image Download: Automatically downloads generated images to local storage
- Queue Management: Submit long-running requests and check their status
- Webhook Support: Optional webhook notifications for completed requests
Installation
- Clone this repository:
git clone https://github.com/PierrunoYT/fal-ideogram-v3-mcp-server.git
cd fal-ideogram-v3-mcp-server
- Install dependencies:
npm install
- Build the project:
npm run build
Configuration
Environment Variables
Set your fal.ai API key as an environment variable:
export FAL_KEY="your_fal_api_key_here"
You can get your API key from fal.ai.
MCP Client Configuration
Add this server to your MCP client configuration. For example, in Claude Desktop's config file:
{
"mcpServers": {
"fal-ideogram-v3": {
"command": "npx",
"args": ["-y", "https://github.com/PierrunoYT/fal-ideogram-v3-mcp-server.git"],
"env": {
"FAL_KEY": "your_fal_api_key_here"
}
}
}
}
If the package is published to npm, you can use:
{
"mcpServers": {
"fal-ideogram-v3": {
"command": "npx",
"args": ["fal-ideogram-v3-mcp-server"],
"env": {
"FAL_KEY": "your_fal_api_key_here"
}
}
}
}
Alternatively, if you've cloned the repository locally:
{
"mcpServers": {
"fal-ideogram-v3": {
"command": "node",
"args": ["/path/to/fal-ideogram-v3-mcp-server/build/index.js"],
"env": {
"FAL_KEY": "your_fal_api_key_here"
}
}
}
}
Available Tools
1. ideogram_v3_generate
Generate images using the standard synchronous method.
Parameters:
prompt(required): Text description of the image to generatenegative_prompt(optional): What you don't want in the imageimage_size(optional): Predefined size or custom {width, height} object (default: "square_hd")rendering_speed(optional): "TURBO", "BALANCED", or "QUALITY" (default: "BALANCED")style(optional): "AUTO", "GENERAL", "REALISTIC", or "DESIGN"style_codes(optional): Array of 8-character hexadecimal style codescolor_palette(optional): Color palette preset or custom RGB colorsimage_urls(optional): Array of style reference image URLsexpand_prompt(optional): Use MagicPrompt enhancement (default: true)num_images(optional): Number of images to generate (1-4, default: 1)seed(optional): Random seed for reproducible resultssync_mode(optional): Wait for completion (default: true)
Example:
{
"prompt": "The Bone Forest stretched across the horizon, its trees fashioned from the ossified remains of ancient leviathans that once swam through the sky. In sky writes \"Ideogram V3 in fal.ai\"",
"image_size": "square_hd",
"rendering_speed": "BALANCED",
"style": "GENERAL"
}
2. ideogram_v3_generate_queue
Submit a long-running image generation request to the queue.
Parameters: Same as ideogram_v3_generate plus:
webhook_url(optional): URL for webhook notifications
Returns: A request ID for tracking the job
3. ideogram_v3_queue_status
Check the status of a queued request.
Parameters:
request_id(required): The request ID from queue submissionlogs(optional): Include logs in response (default: true)
4. ideogram_v3_queue_result
Get the result of a completed queued request.
Parameters:
request_id(required): The request ID from queue submission
Image Sizes
Predefined Sizes
square_hd: High-definition squaresquare: Standard squareportrait_4_3: Portrait 4:3 aspect ratioportrait_16_9: Portrait 16:9 aspect ratiolandscape_4_3: Landscape 4:3 aspect ratiolandscape_16_9: Landscape 16:9 aspect ratio
Custom Sizes
You can also specify custom dimensions:
{
"image_size": {
"width": 1280,
"height": 720
}
}
Style Control
Style Presets
Use predefined styles:
{
"style": "REALISTIC"
}
Style Codes
Use 8-character hexadecimal style codes:
{
"style_codes": ["A1B2C3D4", "E5F6A7B8"]
}
Note: Cannot use both style and style_codes together.
Color Palettes
Preset Palettes
{
"color_palette": {
"name": "EMBER"
}
}
Available presets: EMBER, FRESH, JUNGLE, MAGIC, MELON, MOSAIC, PASTEL, ULTRAMARINE
Custom Color Palettes
{
"color_palette": {
"members": [
{
"rgb": {"r": 255, "g": 0, "b": 0},
"color_weight": 0.7
},
{
"rgb": {"r": 0, "g": 255, "b": 0},
"color_weight": 0.3
}
]
}
}
Style Reference Images
Use reference images to guide the generation style:
{
"image_urls": [
"https://example.com/style-reference1.jpg",
"https://example.com/style-reference2.png"
]
}
Note: Maximum total size of 10MB across all style references. Supported formats: JPEG, PNG, WebP.
Rendering Speed
Control the quality vs speed trade-off:
TURBO: Fastest generation, lower qualityBALANCED: Good balance of speed and quality (default)QUALITY: Highest quality, slower generation
Output
Generated images are automatically downloaded to a local images/ directory with descriptive filenames. The response includes:
- Local file paths
- Original URLs
- Image dimensions (when available)
- Content types
- File sizes (when available)
- Generation parameters used
- Request IDs for tracking
- Seed values for reproducibility
Error Handling
The server provides detailed error messages for:
- Missing API keys
- Invalid parameters
- Conflicting parameters (e.g., using both style and style_codes)
- Network issues
- API rate limits
- Generation failures
Development
Running in Development Mode
npm run dev
Testing the Server
npm test
Getting the Installation Path
npm run get-path
API Reference
This server implements the fal-ai/ideogram/v3 API. For detailed API documentation, visit:
Examples
Basic Text-to-Image Generation
{
"prompt": "A majestic dragon soaring through clouds with 'Hello World' written in the sky"
}
Advanced Generation with Style Control
{
"prompt": "A cyberpunk cityscape at night",
"style": "DESIGN",
"color_palette": {"name": "ULTRAMARINE"},
"rendering_speed": "QUALITY",
"image_size": "landscape_16_9"
}
Using Style Reference Images
{
"prompt": "A portrait of a woman in Renaissance style",
"image_urls": ["https://example.com/renaissance-painting.jpg"],
"style": "REALISTIC"
}
Queue-based Generation with Webhook
{
"prompt": "A detailed architectural drawing of a futuristic building",
"rendering_speed": "QUALITY",
"webhook_url": "https://your-server.com/webhook"
}
License
MIT License - see LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
Support
For issues and questions:
- Open an issue on GitHub
- Check the fal.ai documentation
Changelog
v1.0.0
- Initial release with fal-ai/ideogram/v3 API support
- Text-to-image generation with superior text rendering
- Style control with presets, codes, and color palettes
- Style reference image support
- Queue management with webhook support
- Local image download functionality
- Comprehensive error handling
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。