fal-ai Ideogram V3 MCP Server

fal-ai Ideogram V3 MCP Server

Enables high-quality AI image generation with superior text rendering using the fal-ai/ideogram/v3 model. Supports advanced style control, custom dimensions, color palettes, reference images, and queue-based generation with automatic local image downloads.

Category
访问服务器

README

fal-ai/ideogram/v3 MCP Server

A Model Context Protocol (MCP) server that provides access to the fal-ai/ideogram/v3 image generation model. This server allows you to generate high-quality images with superior text rendering capabilities using advanced AI technology through the fal.ai platform.

Features

  • High-Quality Image Generation: Generate stunning images using the fal-ai/ideogram/v3 model
  • Superior Text Rendering: Advanced text-to-image generation with excellent text quality
  • Multiple Generation Methods: Support for synchronous and queue-based generation
  • Flexible Image Sizing: Support for predefined sizes and custom dimensions
  • Advanced Style Control: Style presets, style codes, and color palettes
  • Style Reference Images: Use reference images to guide the generation style
  • Local Image Download: Automatically downloads generated images to local storage
  • Queue Management: Submit long-running requests and check their status
  • Webhook Support: Optional webhook notifications for completed requests

Installation

  1. Clone this repository:
git clone https://github.com/PierrunoYT/fal-ideogram-v3-mcp-server.git
cd fal-ideogram-v3-mcp-server
  1. Install dependencies:
npm install
  1. Build the project:
npm run build

Configuration

Environment Variables

Set your fal.ai API key as an environment variable:

export FAL_KEY="your_fal_api_key_here"

You can get your API key from fal.ai.

MCP Client Configuration

Add this server to your MCP client configuration. For example, in Claude Desktop's config file:

{
  "mcpServers": {
    "fal-ideogram-v3": {
      "command": "npx",
      "args": ["-y", "https://github.com/PierrunoYT/fal-ideogram-v3-mcp-server.git"],
      "env": {
        "FAL_KEY": "your_fal_api_key_here"
      }
    }
  }
}

If the package is published to npm, you can use:

{
  "mcpServers": {
    "fal-ideogram-v3": {
      "command": "npx",
      "args": ["fal-ideogram-v3-mcp-server"],
      "env": {
        "FAL_KEY": "your_fal_api_key_here"
      }
    }
  }
}

Alternatively, if you've cloned the repository locally:

{
  "mcpServers": {
    "fal-ideogram-v3": {
      "command": "node",
      "args": ["/path/to/fal-ideogram-v3-mcp-server/build/index.js"],
      "env": {
        "FAL_KEY": "your_fal_api_key_here"
      }
    }
  }
}

Available Tools

1. ideogram_v3_generate

Generate images using the standard synchronous method.

Parameters:

  • prompt (required): Text description of the image to generate
  • negative_prompt (optional): What you don't want in the image
  • image_size (optional): Predefined size or custom {width, height} object (default: "square_hd")
  • rendering_speed (optional): "TURBO", "BALANCED", or "QUALITY" (default: "BALANCED")
  • style (optional): "AUTO", "GENERAL", "REALISTIC", or "DESIGN"
  • style_codes (optional): Array of 8-character hexadecimal style codes
  • color_palette (optional): Color palette preset or custom RGB colors
  • image_urls (optional): Array of style reference image URLs
  • expand_prompt (optional): Use MagicPrompt enhancement (default: true)
  • num_images (optional): Number of images to generate (1-4, default: 1)
  • seed (optional): Random seed for reproducible results
  • sync_mode (optional): Wait for completion (default: true)

Example:

{
  "prompt": "The Bone Forest stretched across the horizon, its trees fashioned from the ossified remains of ancient leviathans that once swam through the sky. In sky writes \"Ideogram V3 in fal.ai\"",
  "image_size": "square_hd",
  "rendering_speed": "BALANCED",
  "style": "GENERAL"
}

2. ideogram_v3_generate_queue

Submit a long-running image generation request to the queue.

Parameters: Same as ideogram_v3_generate plus:

  • webhook_url (optional): URL for webhook notifications

Returns: A request ID for tracking the job

3. ideogram_v3_queue_status

Check the status of a queued request.

Parameters:

  • request_id (required): The request ID from queue submission
  • logs (optional): Include logs in response (default: true)

4. ideogram_v3_queue_result

Get the result of a completed queued request.

Parameters:

  • request_id (required): The request ID from queue submission

Image Sizes

Predefined Sizes

  • square_hd: High-definition square
  • square: Standard square
  • portrait_4_3: Portrait 4:3 aspect ratio
  • portrait_16_9: Portrait 16:9 aspect ratio
  • landscape_4_3: Landscape 4:3 aspect ratio
  • landscape_16_9: Landscape 16:9 aspect ratio

Custom Sizes

You can also specify custom dimensions:

{
  "image_size": {
    "width": 1280,
    "height": 720
  }
}

Style Control

Style Presets

Use predefined styles:

{
  "style": "REALISTIC"
}

Style Codes

Use 8-character hexadecimal style codes:

{
  "style_codes": ["A1B2C3D4", "E5F6A7B8"]
}

Note: Cannot use both style and style_codes together.

Color Palettes

Preset Palettes

{
  "color_palette": {
    "name": "EMBER"
  }
}

Available presets: EMBER, FRESH, JUNGLE, MAGIC, MELON, MOSAIC, PASTEL, ULTRAMARINE

Custom Color Palettes

{
  "color_palette": {
    "members": [
      {
        "rgb": {"r": 255, "g": 0, "b": 0},
        "color_weight": 0.7
      },
      {
        "rgb": {"r": 0, "g": 255, "b": 0},
        "color_weight": 0.3
      }
    ]
  }
}

Style Reference Images

Use reference images to guide the generation style:

{
  "image_urls": [
    "https://example.com/style-reference1.jpg",
    "https://example.com/style-reference2.png"
  ]
}

Note: Maximum total size of 10MB across all style references. Supported formats: JPEG, PNG, WebP.

Rendering Speed

Control the quality vs speed trade-off:

  • TURBO: Fastest generation, lower quality
  • BALANCED: Good balance of speed and quality (default)
  • QUALITY: Highest quality, slower generation

Output

Generated images are automatically downloaded to a local images/ directory with descriptive filenames. The response includes:

  • Local file paths
  • Original URLs
  • Image dimensions (when available)
  • Content types
  • File sizes (when available)
  • Generation parameters used
  • Request IDs for tracking
  • Seed values for reproducibility

Error Handling

The server provides detailed error messages for:

  • Missing API keys
  • Invalid parameters
  • Conflicting parameters (e.g., using both style and style_codes)
  • Network issues
  • API rate limits
  • Generation failures

Development

Running in Development Mode

npm run dev

Testing the Server

npm test

Getting the Installation Path

npm run get-path

API Reference

This server implements the fal-ai/ideogram/v3 API. For detailed API documentation, visit:

Examples

Basic Text-to-Image Generation

{
  "prompt": "A majestic dragon soaring through clouds with 'Hello World' written in the sky"
}

Advanced Generation with Style Control

{
  "prompt": "A cyberpunk cityscape at night",
  "style": "DESIGN",
  "color_palette": {"name": "ULTRAMARINE"},
  "rendering_speed": "QUALITY",
  "image_size": "landscape_16_9"
}

Using Style Reference Images

{
  "prompt": "A portrait of a woman in Renaissance style",
  "image_urls": ["https://example.com/renaissance-painting.jpg"],
  "style": "REALISTIC"
}

Queue-based Generation with Webhook

{
  "prompt": "A detailed architectural drawing of a futuristic building",
  "rendering_speed": "QUALITY",
  "webhook_url": "https://your-server.com/webhook"
}

License

MIT License - see LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

Support

For issues and questions:

Changelog

v1.0.0

  • Initial release with fal-ai/ideogram/v3 API support
  • Text-to-image generation with superior text rendering
  • Style control with presets, codes, and color palettes
  • Style reference image support
  • Queue management with webhook support
  • Local image download functionality
  • Comprehensive error handling

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选