FAL Reve MCP Server
Enables high-quality text-to-image generation and image editing using FAL AI's Reve model. Supports batch processing, multiple aspect ratios and formats, with automatic local image downloads and both real-time and async processing modes.
README
FAL Reve MCP Server
A Model Context Protocol (MCP) server that provides access to Reve - a text-to-image model that generates detailed visual output closely following your instructions, with strong aesthetic quality and accurate text rendering.
🔗 Repository: https://github.com/PierrunoYT/fal-reve-edit-mcp-server
✅ Enhanced Reliability: Server handles missing API keys gracefully without crashes and includes robust error handling.
Features
- High-Quality Image Generation: Uses Reve - a text-to-image model via FAL AI
- Image Editing: Edit existing images by uploading and transforming them via text prompts
- Detailed Visual Output: Generates images that closely follow your instructions
- Strong Aesthetic Quality: Produces visually appealing results
- Accurate Text Rendering: Superior text integration and rendering capabilities
- Automatic Image Download: Generated and edited images are automatically saved to local
imagesdirectory - Multiple Aspect Ratios: Support for 16:9, 9:16, 3:2, 2:3, 4:3, 3:4, and 1:1 (generation only)
- Batch Generation/Editing: Generate or edit up to 4 images at once
- Dual Methods: Both real-time and async queue-based generation and editing
- Flexible Output Formats: Support for PNG, JPEG, and WebP formats
- Multiple Input Formats: Supports PNG, JPEG, WebP, AVIF, and HEIF for image editing
- Detailed Responses: Returns both local file paths and original URLs with metadata
- Robust Error Handling: Graceful handling of missing API keys without server crashes
- Universal Portability: Works anywhere with npx - no local installation required
- Enhanced Reliability: Graceful shutdown handlers and comprehensive error reporting
Prerequisites
- Node.js 18 or higher
- FAL AI API key
Installation
1. Get your FAL AI API Key
- Visit FAL AI
- Sign up for an account
- Navigate to your dashboard
- Generate an API key
2. Clone or Download
git clone https://github.com/PierrunoYT/fal-reve-edit-mcp-server.git
cd fal-reve-edit-mcp-server
3. Install Dependencies and Build
npm install
npm run build
This will compile the TypeScript source code to JavaScript in the build/ directory.
Configuration
🚀 Recommended: Universal npx Configuration (Works Everywhere)
Best option for portability - works on any machine with Node.js:
{
"mcpServers": {
"fal-reve": {
"command": "npx",
"args": [
"-y",
"https://github.com/PierrunoYT/fal-reve-edit-mcp-server.git"
],
"env": {
"FAL_KEY": "your-fal-api-key-here"
}
}
}
}
Benefits:
- ✅ Universal Access: Works on any machine with Node.js
- ✅ No Local Installation: npx downloads, builds, and runs automatically
- ✅ Always Latest Version: Pulls from GitHub repository
- ✅ Cross-Platform: Windows, macOS, Linux compatible
- ✅ Settings Sync: Works everywhere you use your MCP client
- ✅ Auto-Build: Automatically compiles TypeScript on first run
Alternative: Local Installation
Note: Local installation requires building the project first with npm install && npm run build.
If you prefer to install locally, use the path helper:
npm run get-path
This will output the complete MCP configuration with the correct absolute path.
For Claude Desktop
Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS) or %APPDATA%\Claude\claude_desktop_config.json (Windows):
{
"mcpServers": {
"fal-reve": {
"command": "node",
"args": ["path/to/fal-reve-edit-mcp-server/build/index.js"],
"env": {
"FAL_KEY": "your-fal-api-key-here"
}
}
}
}
For Kilo Code MCP Settings
Add to your MCP settings file at:
C:\Users\[username]\AppData\Roaming\Kilo-Code\MCP\settings\mcp_settings.json
{
"mcpServers": {
"fal-reve": {
"command": "node",
"args": ["path/to/fal-reve-edit-mcp-server/build/index.js"],
"env": {
"FAL_KEY": "your-fal-api-key-here"
},
"disabled": false,
"alwaysAllow": []
}
}
}
Available Tools
reve_generate
Generate images using Reve with real-time processing.
Parameters:
prompt(required): The text description of the desired imagesync_mode(optional): If true, the media will be returned as a data URI and the output data won't be available in the request history (default: false)num_images(optional): Number of images to generate, 1-4 (default: 1)output_format(optional): "png", "jpeg", or "webp" (default: "png")aspect_ratio(optional): "16:9", "9:16", "3:2", "2:3", "4:3", "3:4", or "1:1" (default: "3:2")
Response includes:
- Image URLs for immediate access
- Generation metadata (request ID)
- File information (content type, dimensions)
- Local file paths for downloaded images
reve_generate_async
Generate images using Reve with async queue processing for longer requests.
Parameters: Same as reve_generate
Use this tool when:
- Generating multiple images (2-4)
- Complex prompts that might take longer
- When the regular tool times out
- For batch processing workflows
Features:
- Queue-based processing with status polling
- 5-minute timeout with progress updates
- Detailed logging of generation progress
reve_edit
Edit an existing image using Reve - upload an image and transform it via a text prompt.
Parameters:
prompt(required): The text description of how to edit the provided imageimage_url(required): URL of the reference image to edit. Must be publicly accessible or base64 data URI. Supports PNG, JPEG, WebP, AVIF, and HEIF formatsnum_images(optional): Number of images to generate, 1-4 (default: 1)output_format(optional): "png", "jpeg", or "webp" (default: "png")sync_mode(optional): If true, the media will be returned as a data URI and the output data won't be available in the request history (default: false)
Response includes:
- Edited image URLs for immediate access
- Generation metadata (request ID)
- File information (content type, dimensions)
- Local file paths for downloaded images
reve_edit_async
Edit an existing image using Reve with async queue processing for longer requests.
Parameters: Same as reve_edit
Use this tool when:
- Editing multiple variations (2-4)
- Complex edits that might take longer
- When the regular tool times out
- For batch editing workflows
Features:
- Queue-based processing with status polling
- 5-minute timeout with progress updates
- Detailed logging of editing progress
📥 How Image Download Works
The FAL Reve MCP server automatically downloads generated images to your local machine. Here's the complete process:
1. Image Generation Flow
- API Call: Server calls FAL AI's Reve API
- Response: FAL returns temporary URLs for generated images
- Auto-Download: Server immediately downloads images to local storage
- Response: Returns both local paths and original URLs
2. Download Implementation
Download Function (downloadImage):
async function downloadImage(url: string, filename: string): Promise<string> {
// 1. Parse the URL and determine HTTP/HTTPS client
const parsedUrl = new URL(url);
const client = parsedUrl.protocol === 'https:' ? https : http;
// 2. Create 'images' directory if it doesn't exist
const imagesDir = path.join(process.cwd(), 'images');
if (!fs.existsSync(imagesDir)) {
fs.mkdirSync(imagesDir, { recursive: true });
}
// 3. Create file write stream
const filePath = path.join(imagesDir, filename);
const file = fs.createWriteStream(filePath);
// 4. Download and pipe to file
client.get(url, (response) => {
response.pipe(file);
// Handle completion and errors
});
}
Filename Generation (generateImageFilename):
function generateImageFilename(prompt: string, index: number, outputFormat: string): string {
// Creates safe filename: reve_prompt_index_timestamp.png
const safePrompt = prompt
.toLowerCase()
.replace(/[^a-z0-9\s]/g, '') // Remove special characters
.replace(/\s+/g, '_') // Replace spaces with underscores
.substring(0, 50); // Limit length
const timestamp = new Date().toISOString().replace(/[:.]/g, '-');
return `reve_${safePrompt}_${index}_${timestamp}.${outputFormat}`;
}
3. File Storage Details
Directory Structure:
your-project/
├── images/ # Auto-created directory
│ ├── reve_mountain_landscape_1_2025-06-24T18-30-45-123Z.png
│ ├── reve_cute_robot_1_2025-06-24T18-31-20-456Z.png
│ └── ...
Filename Format:
- Prefix:
reve_ - Prompt: First 50 chars, sanitized (alphanumeric + underscores)
- Index: Image number (for multiple images)
- Timestamp: ISO timestamp for uniqueness
- Extension:
.png,.jpeg, or.webpbased on output_format
4. Response Format
The server returns both local and remote information:
Successfully generated 1 image(s) using Reve:
Prompt: "a serene mountain landscape with text 'REVE' painted in white"
Aspect Ratio: 3:2
Output Format: png
Request ID: req_abc123
Generated Images:
Image 1:
Local Path: /path/to/project/images/reve_a_serene_mountain_landscape_1_2025-06-24T18-30-45-123Z.png
Original URL: https://v3.fal.media/files/...
Dimensions: 1024x1024
Images have been downloaded to the local 'images' directory.
Example Usage
Basic Image Generation
Generate a photorealistic image of a golden retriever playing in a field of sunflowers with the text "HAPPY DOG" written in bold letters
With Specific Parameters
Generate an image with:
- Prompt: "A minimalist logo design for a tech startup, clean lines, with 'STARTUP' text"
- Aspect ratio: 16:9
- Output format: png
- Number of images: 2
Advanced Usage with Text Rendering
Generate 4 images of "A futuristic cityscape at night with neon lights and flying cars, large billboard displaying 'FUTURE CITY 2025'"
with aspect ratio 16:9
Text-Heavy Prompts (Reve Specialty)
Create an image of a vintage bookstore with multiple book spines showing titles like "The Art of Code", "Digital Dreams", and "Future Stories" clearly readable
WebP Format Example
Generate an image with:
- Prompt: "A serene mountain landscape at sunset"
- Output format: webp
- Aspect ratio: 3:2
Image Editing Examples
Basic Image Edit
Edit an image with:
- Image URL: "https://example.com/image.png"
- Prompt: "Give him a friend"
Advanced Image Edit
Edit an image with:
- Image URL: "https://example.com/photo.jpg"
- Prompt: "Add a sunset sky in the background"
- Number of images: 2
- Output format: png
Editing with Base64 Data URI
Edit an image with:
- Image URL: "..."
- Prompt: "Make it more vibrant and colorful"
- Output format: webp
Technical Details
Architecture
- Language: TypeScript with ES2022 target
- Runtime: Node.js 18+ with ES modules
- Protocol: Model Context Protocol (MCP) SDK v1.0.0
- API Client: FAL AI JavaScript client v1.0.0
- Validation: Zod schema validation
API Endpoints Used
- Text-to-Image Real-time:
fal-ai/reve/text-to-image(subscribe method) - Text-to-Image Async:
fal-ai/reve/text-to-image(queue method) - Image Editing Real-time:
fal-ai/reve/edit(subscribe method) - Image Editing Async:
fal-ai/reve/edit(queue method)
Error Handling
- Graceful API key handling: Server continues running even without FAL_KEY set
- No crash failures: Removed
process.exit()calls that caused connection drops - Null safety checks: All tools validate API client availability before execution
- Graceful shutdown: Proper SIGINT and SIGTERM signal handling
- API error catching: Comprehensive error reporting with detailed context
- Timeout handling: Robust async request management with progress updates
- User-friendly messages: Clear error descriptions instead of technical crashes
Development
Project Structure
├── src/
│ └── index.ts # Main MCP server implementation
├── build/ # Compiled JavaScript (created after npm run build)
├── test-server.js # Server testing utility
├── get-path.js # Configuration path helper
├── example-mcp-config.json # Example configuration
├── package.json # Project metadata and dependencies
└── tsconfig.json # TypeScript configuration
Scripts
npm run build- Compile TypeScript to JavaScriptnpm run dev- Watch mode for developmentnpm run start- Start the server directlynpm run test- Test server startup and basic functionalitynpm run get-path- Get configuration path for your system
Making Changes
- Edit files in the
src/directory - Run
npm run buildto compile - Restart your MCP client to use the updated server
Testing
npm run test
This runs a basic connectivity test that verifies:
- Server starts correctly
- MCP protocol initialization
- Tool discovery functionality
API Costs
This server uses the FAL AI platform, which charges per image generation. Check FAL AI pricing for current rates.
Typical costs (as of 2024):
- Reve: Check FAL AI pricing for current rates
- Costs vary by resolution and complexity
Troubleshooting
Server not appearing in MCP client
- Recommended: Use the npx configuration for universal compatibility (builds automatically)
- If using local installation:
- Make sure you've run
npm installandnpm run buildfirst - Verify the path to
build/index.jsis correct and absolute - Ensure the
build/directory exists with compiled files
- Make sure you've run
- Ensure Node.js 18+ is installed:
node --version - Test server startup:
npm run test - Restart your MCP client (Claude Desktop, Kilo Code, etc.)
- Note: Server will start successfully even without FAL_KEY - check tool responses for API key errors
Image generation failing
- Verify your FAL API key is valid and has sufficient credits
- Check that your prompt follows FAL AI's content policy
- Try reducing the number of images or simplifying the prompt
- Use the async tool for complex requests
- Check the server logs for detailed error messages
- Ensure the Reve model is available in your region
Image editing failing
- Verify your FAL API key is valid and has sufficient credits
- Ensure the image URL is publicly accessible or use a base64 data URI
- Check that the image format is supported (PNG, JPEG, WebP, AVIF, HEIF)
- Verify the image URL is valid and accessible
- Try reducing the number of edited images or simplifying the edit prompt
- Use the async tool for complex edits
- Check the server logs for detailed error messages
Build issues
If you need to rebuild the server:
npm install
npm run build
Configuration issues
Use the helper script to get the correct path:
npm run get-path
Support
For issues with:
- This MCP server: Create an issue in this repository
- FAL AI API: Check FAL AI documentation
- MCP Protocol: See MCP documentation
License
MIT License - see LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Test with
npm run test - Submit a pull request
Changelog
v1.1.0
- ✏️ Image Editing Support: Added
reve_editandreve_edit_asynctools for editing existing images - 🖼️ Multiple Input Formats: Support for PNG, JPEG, WebP, AVIF, and HEIF formats for image editing
- 📝 Enhanced Documentation: Added comprehensive examples and troubleshooting for image editing
v1.0.0
- 🚀 Initial release: Reve support via FAL AI
- 📥 Automatic image download: Generated images are automatically saved to local
imagesdirectory - 🗂️ Smart filename generation: Images saved with descriptive names including prompt and timestamp
- 🔄 Enhanced responses: Returns both local file paths and original URLs for maximum flexibility
- 📁 Auto-directory creation: Creates
imagesfolder automatically if it doesn't exist - 🛡️ Download error handling: Graceful fallback to original URLs if local download fails
- 🎨 Accurate text rendering: Superior text integration capabilities with Reve
- ⚙️ Comprehensive controls: Full parameter support including aspect ratios and output formats
- 🔄 Dual generation methods: Both real-time and async queue-based generation
- 📐 Multiple aspect ratios: Support for 7 different aspect ratios (16:9, 9:16, 3:2, 2:3, 4:3, 3:4, 1:1)
- 🖼️ Multiple output formats: Support for PNG, JPEG, and WebP formats
- 🔧 Robust error handling: Graceful shutdown handlers and comprehensive error reporting
- 🌍 Universal portability: Works everywhere with npx configuration
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。