Fal.ai MCP Server

Fal.ai MCP Server

Enables seamless integration with Fal.ai's 600+ image generation models including Flux and Stable Diffusion. Supports real-time streaming, workflow execution, and unified access to AI image generation through natural language.

Category
访问服务器

README

Fal.ai MCP Server

An MCP (Model Context Protocol) server that provides seamless integration with Fal.ai's image generation models and workflows.

Features

  • 🎨 Image Generation - Access 600+ Fal.ai models including Flux, Stable Diffusion, and more
  • 🔄 Workflow Support - Run pre-built pipelines like sdxl-sticker
  • 🚀 Streaming - Real-time progress updates for long-running operations
  • 📦 Simple API - Unified interface for all models and workflows
  • Queue Management - Built-in status tracking for async operations

Installation

Quick Install (npm)

npm install -g fal-mcp-server

From Source

git clone https://github.com/yourusername/fal-mcp-server.git
cd fal-mcp-server
npm install
npm run build
npm link

Setup

1. Get your Fal.ai API Key

Sign up at fal.ai and get your API key from the dashboard.

2. Add to Claude Code

claude mcp add fal --env "FAL_KEY=your-api-key-here" -- npx -y fal-mcp-server

3. Verify Connection

claude mcp list

You should see:

fal: npx -y fal-mcp-server - ✓ Connected

Available Tools

generate_image

Generate images using any Fal.ai model.

Parameters:

  • prompt (required): Text description of the image
  • model: Model ID (default: "fal-ai/flux/schnell")
  • image_size: "square", "landscape_4_3", or "portrait_3_4"
  • num_images: 1-4 images
  • seed: For reproducible generation

Example:

{
  "prompt": "a cyberpunk cat in neon city",
  "model": "fal-ai/flux/dev",
  "image_size": "landscape_4_3",
  "num_images": 2
}

run_model

Run any Fal.ai model with custom parameters.

Parameters:

  • model_id (required): The model endpoint ID
  • input (required): Model-specific input parameters
  • stream: Enable streaming for real-time updates

Example:

{
  "model_id": "fal-ai/stable-diffusion-v3-medium",
  "input": {
    "prompt": "professional portrait photo",
    "negative_prompt": "low quality, blurry"
  }
}

run_workflow

Execute Fal.ai workflows (multi-step pipelines).

Parameters:

  • workflow_id (required): The workflow ID
  • input (required): Workflow input parameters
  • stream: Stream workflow events

Example:

{
  "workflow_id": "workflows/fal-ai/sdxl-sticker",
  "input": {
    "prompt": "cute puppy mascot"
  }
}

list_popular_models

Get a list of popular Fal.ai models.

check_status

Check the status of an async request.

Parameters:

  • request_id (required): The request ID to check

Popular Models

  • fal-ai/flux/schnell - Fastest Flux model (4 steps)
  • fal-ai/flux/dev - High quality Flux model
  • fal-ai/flux-pro - Professional Flux model
  • fal-ai/fast-sdxl - Fast Stable Diffusion XL
  • fal-ai/stable-diffusion-v3-medium - Latest SD3
  • fal-ai/recraft-v3 - Artistic style generation

Workflows

  • workflows/fal-ai/sdxl-sticker - Generate → Remove BG → Sticker

Usage in Claude Code

Once installed, you can use natural language to interact with Fal.ai:

  • "Generate a cyberpunk cityscape using Flux"
  • "Create a sticker of a cute robot"
  • "Run the sdxl-sticker workflow with a puppy prompt"
  • "List available image models"

Environment Variables

  • FAL_KEY (required): Your Fal.ai API key

Development

# Install dependencies
npm install

# Build TypeScript
npm run build

# Watch mode for development
npm run watch

# Run locally
FAL_KEY=your-key node dist/index.js

License

MIT

Contributing

Contributions welcome! Please submit PRs to improve the server.

Support

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选