Fantasy NBA Israel League MCP
Provides access to Fantasy NBA Israel League statistics including team rankings, player stats, roster details, and shooting analytics for a specific private fantasy basketball league.
README
Fantasy NBA Israel League MCP
A Model Context Protocol (MCP) server that provides tools for accessing our Fantasy NBA Israel League statistics and rankings.
Description
This MCP server connects to a specific Fantasy NBA League API (Fantasy NBA Israel League) and provides tools to retrieve team rankings, player statistics, and detailed analytics.
Note: This server is configured for a specific private league and connects to its dedicated API endpoint. It is not a general-purpose tool for any Fantasy NBA league - it's designed specifically for our league's data structure and API.
Features
- Get Average League Rankings: Retrieve team rankings with detailed statistics
- Sort in ascending or descending order
- Detailed stats per category (FG%, FT%, 3PM, AST, REB, STL, BLK, PTS, GP)
- Total points and rank for each team
- Get Teams: Retrieve list of all teams in the league
- Get Average Stats: Get team statistics in a user-friendly format with stats mapped by category
- Option to retrieve raw or normalized (0-1 scale) data
- Includes games played (GP) for each team
- Get Team Details: Retrieve comprehensive details for a specific team
- Team statistics (totals and averages)
- Complete roster with player stats including minutes played
- ESPN team page URL
- Shot chart stats and ranking information
- Category ranks across all statistical categories
- Get All Players: Retrieve all players in the league with comprehensive statistics
- Includes minutes played and games played for each player
- Get League Shots Stats: Retrieve league-wide shooting statistics for all teams
Prerequisites
Before using this MCP server, you'll need:
-
uvoruvx: A fast Python package installer and runner- Install from https://docs.astral.sh/uv/
- On macOS/Linux:
curl -LsSf https://astral.sh/uv/install.sh | sh - On Windows:
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
-
An MCP-compatible client: Choose one of the following or similar:
- Claude Desktop - AI assistant with MCP support
- Cursor - AI-powered code editor
- VSCode with GitHub Copilot Chat
- Cline - VSCode extension for AI assistance
- Any other MCP-compatible application
Usage
As an MCP Server
This server works with any MCP-compatible client (Claude Desktop, Cursor, Cline, VSCode with GitHub Copilot Chat, etc.). Add the following configuration to your client's MCP settings file:
{
"mcpServers": {
"fantasynbaleague": {
"command": "uvx",
"args": ["fantasy-nba-israel-mcp@latest"]
}
}
}
Common configuration file locations:
- Claude Desktop:
~/Library/Application Support/Claude/claude_desktop_config.json(macOS) or%APPDATA%\Claude\claude_desktop_config.json(Windows) - Cursor:
.cursor/mcp.jsonin your project or global settings - Cline: Use the MCP settings UI or edit
cline_mcp_settings.json - VSCode:
.vscode/mcp.jsonin your workspace
Local Development
For local development and testing, you can run the MCP server in development mode:
uv run mcp dev fantasy_nba_israel_mcp/server.py
This will start an interactive MCP inspector where you can test your tools.
Standalone Testing
from fantasy_nba_israel_mcp import mcp
# Run the MCP server
if __name__ == "__main__":
mcp.run()
Or run directly:
python -m fantasy_nba_israel_mcp
Available Tools
getAveragesLeagueRankings
Get the average league rankings from the API.
Parameters:
order(str, optional): Sort order for rankings"desc"= best to worst (top teams first) - Default"asc"= worst to best (bottom teams first)
Returns: A list of teams with their rankings, total points, and stats per category.
Example Response:
[
{
"team": {
"team_id": 1,
"team_name": "Team Name"
},
"fg_percentage": 0.456,
"ft_percentage": 0.789,
"three_pm": 12.5,
"ast": 24.3,
"reb": 45.6,
"stl": 8.2,
"blk": 5.4,
"pts": 112.3,
"gp": 55,
"total_points": 36,
"rank": 1
}
]
getTeams
Get the list of all teams in the league.
Parameters: None
Returns: A list of teams with their IDs and names.
Example Response:
[
{
"team_id": 1,
"team_name": "First team example"
},
{
"team_id": 2,
"team_name": "Another team name"
}
]
getAverageStats
Get average stats for all teams in a user-friendly format with stats mapped by category name.
Parameters:
use_normalized(bool, optional): Iftrue, returns normalized data (0-1 scale). Iffalse, returns raw stat values. Default isfalse.
Returns: A list of teams with their stats mapped by category name.
Example Response:
[
{
"team": {
"team_id": 1,
"team_name": "First team example"
},
"stats": {
"FG%": 0.48532033,
"FT%": 0.80961071,
"3PM": 1.71184371,
"AST": 4.28449328,
"REB": 6.75579976,
"STL": 1.13919414,
"BLK": 0.72405372,
"PTS": 17.5970696,
"GP": 55
}
}
]
getTeamDetails
Get comprehensive details for a specific team including statistics, roster, and rankings.
Parameters:
team_id(int): The ID of the team to get details for
Returns: Comprehensive team information including team stats, ESPN URL, shot chart, rankings, and full roster.
Example Response:
{
"team": {
"team_id": 1,
"team_name": "Team Name"
},
"espn_url": "https://fantasy.espn.com/basketball/team?leagueId=123&teamId=1",
"shot_chart": {
"team": {"team_id": 1, "team_name": "Team Name"},
"fgm": 14,
"fga": 23,
"fg_percentage": 0.608,
"ftm": 7,
"fta": 12,
"ft_percentage": 0.583,
"gp": 2
},
"raw_averages": {
"fg_percentage": 0.608,
"ft_percentage": 0.583,
"three_pm": 0.5,
"ast": 4.5,
"reb": 5.5,
"stl": 1.0,
"blk": 0.5,
"pts": 18.0,
"gp": 2,
"team": {"team_id": 1, "team_name": "Team Name"}
},
"ranking_stats": {
"team": {"team_id": 1, "team_name": "Team Name"},
"fg_percentage": 12.0,
"ft_percentage": 5.0,
"three_pm": 5.0,
"ast": 8.0,
"reb": 7.0,
"stl": 6.0,
"blk": 9.0,
"pts": 9.0,
"gp": 2,
"total_points": 61.0,
"rank": 6
},
"category_ranks": {
"FG%": 12,
"FT%": 5,
"3PM": 5,
"AST": 8,
"REB": 7,
"STL": 6,
"BLK": 9,
"PTS": 9
},
"players": [
{
"player_name": "LeBron James",
"pro_team": "LAL",
"positions": ["SF", "PF"],
"stats": {
"pts": 25.4,
"reb": 7.3,
"ast": 7.4,
"stl": 1.3,
"blk": 0.5,
"fgm": 9.5,
"fga": 18.5,
"ftm": 4.8,
"fta": 6.3,
"fg_percentage": 0.513,
"ft_percentage": 0.762,
"three_pm": 2.1,
"minutes": 35.2,
"gp": 55
},
"team_id": 1
}
]
}
getAllPlayers
Get all players in the league with comprehensive statistics.
Parameters: None
Returns: A list of all players with their stats and team association.
Example Response:
[
{
"player_name": "LeBron James",
"pro_team": "LAL",
"positions": ["SF", "PF"],
"team_id": 1,
"stats": {
"pts": 25.4,
"reb": 7.3,
"ast": 7.4,
"stl": 1.3,
"blk": 0.5,
"fgm": 9.5,
"fga": 18.5,
"ftm": 4.8,
"fta": 6.3,
"fg_percentage": 0.513,
"ft_percentage": 0.762,
"three_pm": 2.1,
"minutes": 35.2,
"gp": 55
}
}
]
getLeagueShotsStats
Get league-wide shooting statistics for all teams.
Parameters: None
Returns: League-wide shooting statistics with field goal and free throw data for each team.
Example Response:
{
"shots": [
{
"team": {
"team_id": 1,
"team_name": "Team Name"
},
"fgm": 14,
"fga": 23,
"fg_percentage": 0.608,
"ftm": 7,
"fta": 12,
"ft_percentage": 0.583,
"gp": 2
},
{
"team": {
"team_id": 2,
"team_name": "Another Team"
},
"fgm": 12,
"fga": 20,
"fg_percentage": 0.600,
"ftm": 8,
"fta": 10,
"ft_percentage": 0.800,
"gp": 2
}
]
}
Requirements
- Python >= 3.10
- httpx >= 0.28.1
- mcp[cli] >= 1.18.0
Development
To run the server locally for development and testing:
# Install dependencies
uv sync
# Run in development mode with MCP inspector
uv run mcp dev fantasy_nba_israel_mcp/server.py
The MCP inspector will provide an interactive interface to test all your tools.
Author
Asaf Shai (asafshai211@gmail.com)
Support
For issues and questions, please open an issue on the GitHub repository.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。