Farm OS MCP Server
Enables management and monitoring of farm operations including field and crop tracking, livestock monitoring, equipment management, and sensor readings through a Model Context Protocol interface built with FastMCP.
README
Farm OS MCP Server
A Model Context Protocol (MCP) server for Farm OS using FastMCP, built with Python and managed with uv.
Features
This MCP server provides tools for managing farm data including:
- Farm information and summaries
- Field management and crop tracking
- Livestock monitoring
- Equipment tracking
- Sensor readings
All data is currently static for testing purposes.
Setup
Prerequisites
- Python 3.10 or higher
uvpackage manager (install from https://docs.astral.sh/uv/)
Installation
-
Install
uv(if not already installed):Windows (PowerShell):
irm https://astral.sh/uv/install.ps1 | iexmacOS/Linux:
curl -LsSf https://astral.sh/uv/install.sh | sh -
Sync dependencies:
uv sync -
Install the project:
uv pip install -e .
Usage
Run the MCP Server
uv run python farmos_server.py
Test the Tools
Run the test script to see all available tools in action:
uv run python test_server.py
Available Tools
get_farm_info(farm_id)- Get detailed information about a specific farmlist_all_farms()- List all available farmsget_field_info(field_id)- Get information about a specific fieldlist_fields_by_farm(farm_id)- List all fields for a farmget_livestock_info(livestock_id)- Get information about livestocklist_livestock_by_farm(farm_id)- List all livestock for a farmget_equipment_info(equipment_id)- Get information about equipmentlist_equipment_by_farm(farm_id)- List all equipment for a farmget_sensor_readings(field_id)- Get sensor readings for a fieldsearch_by_crop_type(crop_type)- Search fields by crop typeget_farm_summary(farm_id)- Get comprehensive farm summary with statistics
Project Structure
fastmcp/
├── farmos_server.py # Main MCP server with all tools
├── static_data.py # Static test data
├── test_server.py # Test script
├── pyproject.toml # Project configuration
└── setup.py # Setup helper script
Static Test Data
The project includes static test data for:
- 3 farms
- 4 fields
- 3 livestock groups
- 3 equipment items
- 3 sensor devices
All data is defined in static_data.py and can be modified for testing purposes.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。