Farnsworth
Farnsworth gives Claude persistent memory and autonomous agent capabilities. It runs locally and provides Hierarchical Memory (Working -> Episodic -> Archival), a Multi-Model Swarm (combining Ollama models for better reasoning), and specialized agents for Web Browsing, Vision (CLIP), and Voice (Whis
README
🧠 Farnsworth: Your Claude Companion AI
9crfy4udrHQo8eP6mP393b5qwpGLQgcxVg9acmdwBAGS <div align="center">
Give Claude superpowers: persistent memory, model swarms, multimodal understanding, and self-evolution.
Documentation • Roadmap • Contributing • Docker
</div>
🎯 What is Farnsworth?
Farnsworth is a companion AI system that integrates with Claude Code to give Claude capabilities it doesn't have on its own:
| Without Farnsworth | With Farnsworth |
|---|---|
| 🚫 Claude forgets everything between sessions | ✅ Claude remembers your preferences forever |
| 🚫 Claude is a single model | ✅ Model Swarm: 12+ models collaborate via PSO |
| 🚫 Claude can't see images or hear audio | ✅ Multimodal: vision (CLIP/BLIP) + voice (Whisper) |
| 🚫 Claude never learns from feedback | ✅ Claude evolves and adapts to you |
| 🚫 Single user only | ✅ Team collaboration with shared memory |
| 🚫 High RAM/VRAM requirements | ✅ Runs on <2GB RAM with efficient models |
All processing happens locally on your machine. Your data never leaves your computer.
✨ What's New in v0.5.0
- 🐝 Model Swarm - PSO-based collaborative inference with multiple small models
- 🔮 Proactive Intelligence - Anticipatory suggestions based on context and habits
- 🚀 12+ New Models - Phi-4-mini, SmolLM2, Qwen3-4B, TinyLlama, BitNet 2B
- ⚡ Ultra-Efficient - Run on <2GB RAM with TinyLlama, Qwen3-0.6B
- 🎯 Smart Routing - Mixture-of-Experts automatically picks best model per task
- 🔄 Speculative Decoding - 2.5x speedup with draft+verify pairs
- 📊 Hardware Profiles - Auto-configure based on your available resources
Previously Added (v0.4.0)
- 🖼️ Vision Module - CLIP/BLIP image understanding, VQA, OCR
- 🎤 Voice Module - Whisper transcription, speaker diarization, TTS
- 📦 Docker Support - One-command deployment with GPU support
- 👥 Team Collaboration - Shared memory pools, multi-user sessions
🐝 Model Swarm: Collaborative Multi-Model Inference
The Model Swarm system enables multiple small models to work together, achieving better results than any single model:
Swarm Strategies
| Strategy | Description | Best For |
|---|---|---|
| PSO Collaborative | Particle Swarm Optimization guides model selection | Complex tasks |
| Parallel Vote | Run 3+ models, vote on best response | Quality-critical |
| Mixture of Experts | Route to specialist per task type | General use |
| Speculative Ensemble | Fast model drafts, strong model verifies | Speed + quality |
| Fastest First | Start fast, escalate if confidence low | Low latency |
| Confidence Fusion | Weighted combination of outputs | High reliability |
🏗️ Architecture & Privacy
Farnsworth runs 100% locally on your machine.
- No Server Costs: You do not need to pay for hosting.
- Your Data: All memories and files stay on your computer.
- How it connects: The Claude Desktop App spawns Farnsworth as a background process using the Model Context Protocol (MCP).
Supported Models (Jan 2025)
| Model | Params | RAM | Strengths |
|---|---|---|---|
| Phi-4-mini-reasoning | 3.8B | 6GB | Rivals o1-mini in math/reasoning |
| Phi-4-mini | 3.8B | 6GB | GPT-3.5 class, 128K context |
| DeepSeek-R1-1.5B | 1.5B | 4GB | o1-style reasoning, MIT license |
| Qwen3-4B | 4B | 5GB | MMLU-Pro 74%, multilingual |
| SmolLM2-1.7B | 1.7B | 3GB | Best quality at size |
| Qwen3-0.6B | 0.6B | 2GB | Ultra-light, 100+ languages |
| TinyLlama-1.1B | 1.1B | 2GB | Fastest, edge devices |
| BitNet-2B | 2B | 1GB | Native 1-bit, 5-7x CPU speedup |
| Gemma-3n-E2B | 2B eff | 4GB | Multimodal (text/image/audio) |
| Phi-4-multimodal | 5.6B | 8GB | Vision + speech + reasoning |
Hardware Profiles
Farnsworth auto-configures based on your hardware:
minimal: # <4GB RAM: TinyLlama, Qwen3-0.6B
cpu_only: # 8GB+ RAM, no GPU: BitNet, SmolLM2
low_vram: # 2-4GB VRAM: DeepSeek-R1, Qwen3-0.6B
medium_vram: # 4-8GB VRAM: Phi-4-mini, Qwen3-4B
high_vram: # 8GB+ VRAM: Full swarm with verification
⚡ Quick Start
📦 Option 1: One-Line Install (Recommended)
Farnsworth is available on PyPI. This is the easiest way to get started.
pip install farnsworth-ai
Running the Server:
# Start the MCP server
farnsworth-server
# Or customize configuration
farnsworth-server --debug --port 8000
🐳 Option 2: Docker
git clone https://github.com/timowhite88/Farnsworth.git
cd Farnsworth
docker-compose -f docker/docker-compose.yml up -d
🛠️ Option 3: Source (For Developers)
git clone https://github.com/timowhite88/Farnsworth.git
cd Farnsworth
pip install -r requirements.txt
🔌 Configure Claude Code
Add to your Claude Code MCP settings (usually found in claude_desktop_config.json):
For PyPI Install:
{
"mcpServers": {
"farnsworth": {
"command": "farnsworth-server",
"args": [],
"env": {
"FARNSWORTH_LOG_LEVEL": "INFO"
}
}
}
}
📖 Full Installation Guide →
🌟 Key Features
🧠 Advanced Memory System
Claude finally remembers! Multi-tier hierarchical memory:
| Memory Type | Description |
|---|---|
| Working Memory | Current conversation context |
| Episodic Memory | Timeline of interactions, "on this day" recall |
| Semantic Layers | 5-level abstraction hierarchy |
| Knowledge Graph | Entities, relationships, temporal edges |
| Archival Memory | Permanent vector-indexed storage |
| Memory Dreaming | Background consolidation during idle time |
🤖 Agent Swarm (11 Specialists)
Claude can delegate tasks to AI agents:
| Core Agents | Description |
|---|---|
| Code Agent | Programming, debugging, code review |
| Reasoning Agent | Logic, math, step-by-step analysis |
| Research Agent | Information gathering, summarization |
| Creative Agent | Writing, brainstorming, ideation |
| Advanced Agents (v0.3+) | Description |
|---|---|
| Planner Agent | Task decomposition, dependency tracking |
| Critic Agent | Quality scoring, iterative refinement |
| Web Agent | Intelligent browsing, form filling |
| FileSystem Agent | Project understanding, smart search |
| Collaboration (v0.3+) | Description |
|---|---|
| Agent Debates | Multi-perspective synthesis |
| Specialization Learning | Skill development, task routing |
| Hierarchical Teams | Manager coordination, load balancing |
🖼️ Vision Understanding (v0.4+)
See and understand images:
- CLIP Integration - Zero-shot classification, image embeddings
- BLIP Integration - Captioning, visual question answering
- OCR - Extract text from images (EasyOCR)
- Scene Graphs - Extract objects and relationships
- Image Similarity - Compare and search images
🎤 Voice Interaction (v0.4+)
Hear and speak:
- Whisper Transcription - Real-time and batch processing
- Speaker Diarization - Identify different speakers
- Text-to-Speech - Multiple voice options
- Voice Commands - Natural language control
- Continuous Listening - Hands-free mode
👥 Team Collaboration (v0.4+)
Work together with shared AI:
- Shared Memory Pools - Team knowledge bases
- Multi-User Support - Individual profiles and preferences
- Permission System - Role-based access control
- Collaborative Sessions - Real-time multi-user interaction
- Audit Logging - Compliance-ready access trails
📈 Self-Evolution
Farnsworth learns from your feedback and improves automatically:
- Fitness Tracking - Monitors task success, efficiency, satisfaction
- Genetic Optimization - Evolves better configurations over time
- User Avatar - Builds a model of your preferences
- LoRA Evolution - Adapts model weights to your usage
🔍 Smart Retrieval (RAG 2.0)
Self-refining retrieval that gets better at finding relevant information:
- Hybrid Search - Semantic + BM25 keyword search
- Query Understanding - Intent classification, expansion
- Multi-hop Retrieval - Complex question answering
- Context Compression - Token-efficient memory injection
- Source Attribution - Confidence scoring
🛠️ Architecture
┌─────────────────────────────────────────────────────────────┐
│ Claude Code │
│ (Your AI Programming Partner) │
└─────────────────────────────────────────────────────────────┘
│ MCP Protocol
▼
┌─────────────────────────────────────────────────────────────┐
│ Farnsworth MCP Server │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ Memory │ │ Agent │ │Evolution │ │Multimodal│ │
│ │ Tools │ │ Tools │ │ Tools │ │ Tools │ │
│ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │
└─────────────────────────────────────────────────────────────┘
│ │ │
▼ ▼ ▼
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Memory │ │ Agent │ │ Multimodal │
│ System │ │ Swarm │ │ Engine │
│ │ │ │ │ │
│ • Episodic │ │ • Planner │ │ • Vision │
│ • Semantic │ │ • Critic │ │ (CLIP/BLIP)│
│ • Knowledge │ │ • Web │ │ • Voice │
│ Graph v2 │ │ • FileSystem │ │ (Whisper) │
│ • Archival │ │ • Debates │ │ • OCR │
│ • Sharing │ │ • Teams │ │ • TTS │
└──────────────┘ └──────────────┘ └──────────────┘
│ │ │
▼ ▼ ▼
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Evolution │ │Collaboration │ │ Storage │
│ Engine │ │ System │ │ Backends │
│ │ │ │ │ │
│ • Genetic │ │ • Multi-User │ │ • FAISS │
│ Optimizer │ │ • Shared │ │ • ChromaDB │
│ • Fitness │ │ Memory │ │ • Redis │
│ Tracker │ │ • Sessions │ │ • SQLite │
│ • LoRA │ │ • Permissions│ │ │
└──────────────┘ └──────────────┘ └──────────────┘
│ │ │
└────────────────┴────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ Model Swarm (v0.5+) │
│ ┌─────────────────────────────────────────────────────┐ │
│ │ PSO Collaborative Engine │ │
│ │ • Particle positions = model configs │ │
│ │ • Velocity = adaptation direction │ │
│ │ • Global/personal best tracking │ │
│ └─────────────────────────────────────────────────────┘ │
│ │ │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ Phi-4 │ │DeepSeek │ │ Qwen3 │ │ SmolLM2 │ │
│ │ mini │ │ R1-1.5B │ │ 0.6B/4B │ │ 1.7B │ │
│ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │TinyLlama │ │ BitNet │ │ Gemma │ │ Cascade │ │
│ │ 1.1B │ │ 2B(1-bit)│ │ 3n-E2B │ │ (hybrid) │ │
│ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │
└─────────────────────────────────────────────────────────────┘
🔧 Tools Available to Claude
Once connected, Claude has access to these tools:
| Tool | Description |
|---|---|
farnsworth_remember(content, tags) |
Store information in long-term memory |
farnsworth_recall(query, limit) |
Search and retrieve relevant memories |
farnsworth_delegate(task, agent_type) |
Delegate to specialist agent |
farnsworth_evolve(feedback) |
Provide feedback for system improvement |
farnsworth_status() |
Get system health and statistics |
farnsworth_vision(image, task) |
Analyze images (caption, VQA, OCR) |
farnsworth_voice(audio, task) |
Process audio (transcribe, diarize) |
farnsworth_collaborate(action, ...) |
Team collaboration operations |
farnsworth_swarm(prompt, strategy) |
NEW: Multi-model collaborative inference |
📦 Docker Deployment
Multiple deployment profiles available:
# Basic deployment
docker-compose -f docker/docker-compose.yml up -d
# With GPU support
docker-compose -f docker/docker-compose.yml --profile gpu up -d
# With Ollama + ChromaDB
docker-compose -f docker/docker-compose.yml --profile ollama --profile chromadb up -d
# Development mode (hot reload + debugger)
docker-compose -f docker/docker-compose.yml --profile dev up -d
See docker/docker-compose.yml for all options.
📊 Dashboard
Farnsworth includes a Streamlit dashboard for visualization:
python main.py --ui
# Or with Docker:
docker-compose -f docker/docker-compose.yml --profile ui-only up -d
<details> <summary>📸 Dashboard Features</summary>
- Memory Browser - Search and explore all stored memories
- Episodic Timeline - Visual history of interactions
- Knowledge Graph - 3D entity relationships
- Agent Monitor - Active agents and task history
- Evolution Dashboard - Fitness metrics and improvement trends
- Team Collaboration - Shared pools and active sessions
- Model Swarm Monitor - PSO state, model performance, strategy stats
</details>
🚀 Roadmap
See ROADMAP.md for detailed plans.
Completed ✅
- v0.1.0 - Core memory, agents, evolution
- v0.2.0 - Enhanced memory (episodic, semantic, sharing)
- v0.3.0 - Advanced agents (planner, critic, web, filesystem, debates, teams)
- v0.4.0 - Multimodal (vision, voice) + collaboration + Docker
- v0.5.0 - Model Swarm + 12 new models + hardware profiles
Coming Next
- 🎬 Video understanding and summarization
- 🔐 Encryption at rest (AES-256)
- ☁️ Cloud deployment templates (AWS, Azure, GCP)
- 📊 Performance optimization (<100ms recall)
💡 Why "Farnsworth"?
Named after Professor Hubert J. Farnsworth from Futurama - a brilliant inventor who created countless gadgets and whose catchphrase "Good news, everyone!" perfectly captures what we hope you'll feel when using this tool with Claude.
📋 Requirements
| Minimum | Recommended | With Full Swarm |
|---|---|---|
| Python 3.10+ | Python 3.11+ | Python 3.11+ |
| 4GB RAM | 8GB RAM | 16GB RAM |
| 2-core CPU | 4-core CPU | 8-core CPU |
| 5GB storage | 20GB storage | 50GB storage |
| - | 4GB VRAM | 8GB+ VRAM |
Supported Platforms: Windows 10+, macOS 11+, Linux
Optional Dependencies:
ollama- Local LLM inference (recommended)llama-cpp-python- Direct GGUF inferencetorch- GPU accelerationtransformers- Vision/Voice modelsplaywright- Web browsing agentwhisper- Voice transcription
📄 License
Farnsworth is dual-licensed:
| Use Case | License |
|---|---|
| Personal / Educational / Non-commercial | FREE |
| Commercial (revenue > $1M or enterprise) | Commercial License Required |
See LICENSE for details. For commercial licensing, contact via GitHub.
🤝 Contributing
We welcome contributions! See CONTRIBUTING.md for guidelines.
Priority Areas:
- Video understanding module
- Cloud deployment templates
- Performance benchmarks
- Additional model integrations
- Documentation improvements
📚 Documentation
- 📖 User Guide - Complete usage documentation
- 🗺️ Roadmap - Future plans and features
- 🤝 Contributing - How to contribute
- 📜 License - License terms
- 🐳 Docker Guide - Container deployment
- 🐝 Model Configs - Supported models and swarm configs
🔗 Research References
Model Swarm implementation inspired by:
- Model Swarms: Collaborative Search via Swarm Intelligence
- Harnessing Multiple LLMs: Survey on LLM Ensemble
- Small Language Models - MIT Tech Review
⭐ Star History
If Farnsworth helps you, consider giving it a star! ⭐
<div align="center">
Built with ❤️ for the Claude community
"Good news, everyone!" - Professor Farnsworth
Report Bug • Request Feature • Get Commercial License
</div>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。